Spectral/move_to_lib.hlean
2018-01-21 12:28:43 +01:00

1800 lines
72 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- definitions, theorems and attributes which should be moved to files in the HoTT library
import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 algebra.graph
open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc pi group
is_trunc function unit prod bool
attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor]
attribute ap1_gen [unfold 8 9 10]
attribute ap010 [unfold 7]
attribute tro_invo_tro [unfold 9] -- TODO: move
-- TODO: homotopy_of_eq and apd10 should be the same
-- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?)
universe variable u
namespace algebra
variables {A : Type} [add_ab_inf_group A]
definition add_sub_cancel_middle (a b : A) : a + (b - a) = b :=
!add.comm ⬝ !sub_add_cancel
end algebra
namespace eq
definition pathover_tr_pathover_idp_of_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'}
(q : b =[p] b') :
pathover_tr p b ⬝o pathover_idp_of_eq (tr_eq_of_pathover q) = q :=
begin induction q; reflexivity end
-- rename pathover_of_tr_eq_idp
definition pathover_of_tr_eq_idp' {A : Type} {B : A → Type} {a a₂ : A} (p : a = a₂) (b : B a) :
pathover_of_tr_eq idp = pathover_tr p b :=
by induction p; constructor
definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) :
H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H :=
begin apply eq_of_homotopy, intro x, apply inv_inv end
definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g')
(f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) :=
begin induction p, reflexivity end
definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type}
(f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b}
(p : g = g') (a : A) :
apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) :=
begin induction p, reflexivity end
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
begin
induction p₀, induction p, exact H
end
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
begin
induction p₀, induction p', induction p, exact H
end
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
begin
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
end
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
assert qr : Σ(q : a₀ = a₁), ap f q = p,
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
cases qr with q r, apply transport P r, induction q, exact H
end
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
begin
revert a₁' p' H a₁ p,
refine eq.rec_equiv f _,
exact eq.rec_equiv f
end
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{a₁}, f a₀ = g a₁ → Type}
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
begin
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
induction qr with q r, induction q'r' with q' r',
induction q, induction q',
induction r, induction r',
exact H
end
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
{P : Π{b}, f a = b → Type}
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
begin
revert b p, refine equiv_rect g _ _,
exact eq.rec_equiv_to f g p' H
end
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
{P : Π{b c}, g b = c → Type}
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
(p : g b = c) : P p :=
begin
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
end
-- definition homotopy_group_homomorphism_pinv (n : ) {A B : Type*} (f : A ≃* B) :
-- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ :=
-- begin
-- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _,
-- -- intro x, esimp,
-- end
-- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B}
-- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) :=
-- idp
lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
(n k : ) (H : n+1 ≤[] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
homotopy_group_isomorphism_of_pequiv n f ⬝g
ghomotopy_group_ptrunc_of_le H B
definition fundamental_group_isomorphism {X : Type*} {G : Group}
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
definition equiv_pathover2 {A : Type} {a a' : A} (p : a = a')
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
(r : to_fun f =[p] to_fun g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply equiv.sigma_char },
{ apply sigma_pathover _ _ _ r, apply is_prop.elimo }
end
definition equiv_pathover_inv {A : Type} {a a' : A} (p : a = a')
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
(r : to_inv f =[p] to_inv g) : f =[p] g :=
begin
/- this proof is a bit weird, but it works -/
apply equiv_pathover2,
change f⁻¹ᶠ⁻¹ᶠ =[p] g⁻¹ᶠ⁻¹ᶠ,
apply apo (λ(a: A) (h : C a ≃ B a), h⁻¹ᶠ),
apply equiv_pathover2,
exact r
end
definition transport_lemma {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p)⁻¹ (f (transport C p z)) = f z :=
by induction p; reflexivity
definition transport_lemma2 {A : Type} {C : A → Type} {g₁ : A → A}
{x y : A} (p : x = y) (f : Π⦃x⦄, C x → C (g₁ x)) (z : C x) :
transport C (ap g₁ p) (f z) = f (transport C p z) :=
by induction p; reflexivity
definition eq_of_pathover_apo {A C : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'}
{p : a = a'} (g : Πa, B a → C) (q : b =[p] b') :
eq_of_pathover (apo g q) = apd011 g p q :=
by induction q; reflexivity
definition apd02 [unfold 8] {A : Type} {B : A → Type} (f : Πa, B a) {a a' : A} {p q : a = a'}
(r : p = q) : change_path r (apd f p) = apd f q :=
by induction r; reflexivity
definition pathover_ap_cono {A A' : Type} {a₁ a₂ a₃ : A}
{p₁ : a₁ = a₂} {p₂ : a₂ = a₃} (B' : A' → Type) (f : A → A')
{b₁ : B' (f a₁)} {b₂ : B' (f a₂)} {b₃ : B' (f a₃)}
(q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) :
pathover_ap B' f (q₁ ⬝o q₂) =
change_path !ap_con⁻¹ (pathover_ap B' f q₁ ⬝o pathover_ap B' f q₂) :=
by induction q₁; induction q₂; reflexivity
definition concato_eq_eq {A : Type} {B : A → Type} {a₁ a₂ : A} {p₁ : a₁ = a₂}
{b₁ : B a₁} {b₂ b₂' : B a₂} (r : b₁ =[p₁] b₂) (q : b₂ = b₂') :
r ⬝op q = r ⬝o pathover_idp_of_eq q :=
by induction q; reflexivity
definition ap_apd0111 {A₁ A₂ A₃ : Type} {B : A₁ → Type} {C : Π⦃a⦄, B a → Type} {a a₂ : A₁}
{b : B a} {b₂ : B a₂} {c : C b} {c₂ : C b₂}
(g : A₂ → A₃) (f : Πa b, C b → A₂) (Ha : a = a₂) (Hb : b =[Ha] b₂)
(Hc : c =[apd011 C Ha Hb] c₂) :
ap g (apd0111 f Ha Hb Hc) = apd0111 (λa b c, (g (f a b c))) Ha Hb Hc :=
by induction Hb; induction Hc using idp_rec_on; reflexivity
section squareover
variables {A A' : Type} {B : A → Type}
{a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ : A}
/-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
{p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
/-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
{s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
{b : B a}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀}
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂}
{b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄}
/-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₃₀ : b₂₀ =[p₃₀] b₄₀} /-b₄₀-/
/-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {q₃₂ : b₂₂ =[p₃₂] b₄₂} /-b₄₂-/
/-b₀₄-/ {q₁₄ : b₀₄ =[p₁₄] b₂₄} /-b₂₄-/ {q₃₄ : b₂₄ =[p₃₄] b₄₄} /-b₄₄-/
{q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-t₃₁-/ {q₄₁ : b₄₀ =[p₄₁] b₄₂}
{q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₃-/ {q₂₃ : b₂₂ =[p₂₃] b₂₄} /-t₃₃-/ {q₄₃ : b₄₂ =[p₄₃] b₄₄}
definition move_right_of_top_over {p : a₀₀ = a} {p' : a = a₂₀}
{s : square p p₁₂ p₀₁ (p' ⬝ p₂₁)} {q : b₀₀ =[p] b} {q' : b =[p'] b₂₀}
(t : squareover B (move_top_of_right s) (q ⬝o q') q₁₂ q₀₁ q₂₁) :
squareover B s q q₁₂ q₀₁ (q' ⬝o q₂₁) :=
begin induction q', induction q, induction q₂₁, exact t end
/- TODO: replace the version in the library by this -/
definition hconcato_pathover' {p : a₂₀ = a₂₂} {sp : p = p₂₁} {s : square p₁₀ p₁₂ p₀₁ p}
{q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B (s ⬝hp sp) q₁₀ q₁₂ q₀₁ q₂₁)
(r : change_path sp q = q₂₁) : squareover B s q₁₀ q₁₂ q₀₁ q :=
by induction sp; induction r; exact t₁₁
variables (s₁₁ q₀₁ q₁₀ q₂₁ q₁₂)
definition squareover_fill_t : Σ (q : b₀₀ =[p₁₀] b₂₀), squareover B s₁₁ q q₁₂ q₀₁ q₂₁ :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_b : Σ (q : b₀₂ =[p₁₂] b₂₂), squareover B s₁₁ q₁₀ q q₀₁ q₂₁ :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₀ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_l : Σ (q : b₀₀ =[p₀₁] b₀₂), squareover B s₁₁ q₁₀ q₁₂ q q₂₁ :=
begin
induction s₁₁, induction q₁₀ using idp_rec_on, induction q₂₁ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
definition squareover_fill_r : Σ (q : b₂₀ =[p₂₁] b₂₂) , squareover B s₁₁ q₁₀ q₁₂ q₀₁ q :=
begin
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₁₀ using idp_rec_on,
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
end
end squareover
/- move this to types.eq, and replace the proof there -/
section
parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
(c₀ : code a₀)
include H c₀
protected definition encode2 {a : A} (q : a₀ = a) : code a :=
transport code q c₀
protected definition decode2' {a : A} (c : code a) : a₀ = a :=
have ⟨a₀, c₀⟩ = ⟨a, c⟩ :> Σa, code a, from !is_prop.elim,
this..1
protected definition decode2 {a : A} (c : code a) : a₀ = a :=
(decode2' c₀)⁻¹ ⬝ decode2' c
open sigma.ops
definition total_space_method2 (a : A) : (a₀ = a) ≃ code a :=
begin
fapply equiv.MK,
{ exact encode2 },
{ exact decode2 },
{ intro c, unfold [encode2, decode2, decode2'],
rewrite [is_prop_elim_self, ▸*, idp_con],
apply tr_eq_of_pathover, apply eq_pr2 },
{ intro q, induction q, esimp, apply con.left_inv, },
end
end
definition total_space_method2_refl {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
(c₀ : code a₀) : total_space_method2 a₀ code H c₀ a₀ idp = c₀ :=
begin
reflexivity
end
section hsquare
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
attribute hhconcat hvconcat [unfold_full]
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
homotopy.rfl
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
λx, !idp_con ⬝ ap_id (q x)
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
λx, !idp_con
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
λx, !ap_id
end hsquare
definition homotopy_group_succ_in_natural (n : ) {A B : Type*} (f : A →* B) :
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹*
definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) :
f ~2 f :=
λa b, idp
definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type}
{f : Πa (b : B a), C b} : f ~2 f :=
λa b, idp
definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type}
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f :=
λa b c, idp
definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type}
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f :=
λa b c, idp
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
by induction q; reflexivity
end eq open eq
namespace nat
protected definition rec_down (P : → Type) (s : ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
begin
induction s with s IH,
{ exact H0 },
{ exact IH (Hs s H0) }
end
/- have Hp : Πn, P n → P (pred n),
begin
intro n p, cases n with n,
{ exact p },
{ exact Hs n p }
end,
have H : Πn, P (s - n),
begin
intro n, induction n with n p,
{ exact H0 },
{ exact Hp (s - n) p }
end,
transport P (nat.sub_self s) (H s)-/
/- this generalizes iterate_commute -/
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
(h : A → B) (p : hsquare f g h h) (n : ) : hsquare (f^[n]) (g^[n]) h h :=
begin
induction n with n q,
exact homotopy.rfl,
exact q ⬝htyh p
end
definition iterate_equiv2 {A : Type} {C : A → Type} (f : A → A) (h : Πa, C a ≃ C (f a))
(k : ) (a : A) : C a ≃ C (f^[k] a) :=
begin induction k with k IH, reflexivity, exact IH ⬝e h (f^[k] a) end
/- replace proof of le_of_succ_le by this -/
definition le_step_left {n m : } (H : succ n ≤ m) : n ≤ m :=
by induction H with H m H'; exact le_succ n; exact le.step H'
/- TODO: make proof of le_succ_of_le simpler -/
definition nat.add_le_add_left2 {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m :=
by induction H with m H H₂; reflexivity; exact le.step H₂
end nat
namespace trunc_index
open is_conn nat trunc is_trunc
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
by induction n with n p; reflexivity; exact ap succ p
protected definition of_nat_monotone {n k : } : n ≤ k → of_nat n ≤ of_nat k :=
begin
intro H, induction H with k H K,
{ apply le.tr_refl },
{ apply le.step K }
end
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
begin
induction n with n IH,
{ exact minus_two_add_plus_two k },
{ exact !succ_add_plus_two ⬝ ap succ IH}
end
end trunc_index
namespace int
private definition maxm2_le.lemma₁ {n k : } : n+(1:int) + -[1+ k] ≤ n :=
le.intro (
calc n + 1 + -[1+ k] + k
= n + 1 + (-(k + 1)) + k : by reflexivity
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
... = n + 1 + (- 1 - k + k) : add.assoc
... = n + 1 + (- 1 + -k + k) : by reflexivity
... = n + 1 + (- 1 + (-k + k)) : add.assoc
... = n + 1 + (- 1 + 0) : add.left_inv
... = n + (1 + (- 1 + 0)) : add.assoc
... = n : int.add_zero)
private definition maxm2_le.lemma₂ {n : } {k : } : -[1+ n] + 1 + k ≤ k :=
le.intro (
calc -[1+ n] + 1 + k + n
= - (n + 1) + 1 + k + n : by reflexivity
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
... = -n + 0 + k + n : add.left_inv 1
... = -n + k + n : int.add_zero
... = k + -n + n : int.add_comm
... = k + (-n + n) : int.add_assoc
... = k + 0 : add.left_inv n
... = k : int.add_zero)
open trunc_index
/-
The function from integers to truncation indices which sends
positive numbers to themselves, and negative numbers to negative
2. In particular -1 is sent to -2, but since we only work with
pointed types, that doesn't matter for us -/
definition maxm2 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
-- we also need the max -1 - function
definition maxm1 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
definition maxm2_le_maxm1 (n : ) : maxm2 n ≤ maxm1 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le -1 }
end
-- the is maxm1 minus 1
definition maxm1m1 [unfold 1] : → ℕ₋₂ :=
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
definition maxm1_eq_succ (n : ) : maxm1 n = (maxm1m1 n).+1 :=
begin
induction n with n n,
{ reflexivity },
{ reflexivity }
end
definition maxm2_le_maxm0 (n : ) : maxm2 n ≤ max0 n :=
begin
induction n with n n,
{ exact le.tr_refl n },
{ exact minus_two_le 0 }
end
definition max0_le_of_le {n : } {m : } (H : n ≤ of_nat m)
: nat.le (max0 n) m :=
begin
induction n with n n,
{ exact le_of_of_nat_le_of_nat H },
{ exact nat.zero_le m }
end
definition not_neg_succ_le_of_nat {n m : } : ¬m ≤ -[1+n] :=
by cases m: exact id
definition maxm2_monotone {n m : } (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
begin
induction n with n n,
{ induction m with m m,
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
{ exfalso, exact not_neg_succ_le_of_nat H }},
{ apply minus_two_le }
end
definition sub_nat_le (n : ) (m : ) : n - m ≤ n :=
le.intro !sub_add_cancel
definition sub_nat_lt (n : ) (m : ) : n - m < n + 1 :=
add_le_add_right (sub_nat_le n m) 1
definition sub_one_le (n : ) : n - 1 ≤ n :=
sub_nat_le n 1
definition le_add_nat (n : ) (m : ) : n ≤ n + m :=
le.intro rfl
definition le_add_one (n : ) : n ≤ n + 1:=
le_add_nat n 1
open trunc_index
definition maxm2_le (n k : ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
begin
rewrite [-(maxm1_eq_succ n)],
induction n with n n,
{ induction k with k k,
{ induction k with k IH,
{ apply le.tr_refl },
{ exact succ_le_succ IH } },
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
(maxm2_le_maxm1 n) } },
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
rewrite [-(maxm1_eq_succ k)],
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
(maxm2_le_maxm1 k) }
end
end int open int
namespace pmap
/- rename: pmap_eta in namespace pointed -/
definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
begin induction f, reflexivity end
end pmap
namespace lift
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
[H : is_trunc n A] : is_trunc n (plift A) :=
is_trunc_lift A n
definition lift_functor2 {A B C : Type} (f : A → B → C) (x : lift A) (y : lift B) : lift C :=
up (f (down x) (down y))
end lift
-- definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) :=
-- calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l
-- : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l
-- ... ≃ Σ(p : k = l),
-- pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l)
-- : sigma_eq_equiv _ _
-- ... ≃ Σ(p : k = l),
-- respect_pt k = ap (λh, h pt) p ⬝ respect_pt l
-- : sigma_equiv_sigma_right
-- (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l))
-- ... ≃ Σ(p : k = l),
-- respect_pt k = apd10 p pt ⬝ respect_pt l
-- : sigma_equiv_sigma_right
-- (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
-- ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l
-- : sigma_equiv_sigma_left' eq_equiv_homotopy
-- ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k
-- : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
-- ... ≃ (k ~* l) : phomotopy.sigma_char k l
namespace pointed
/- move to pointed -/
open sigma.ops
definition pType.sigma_char' [constructor] : pType.{u} ≃ Σ(X : Type.{u}), X :=
begin
fapply equiv.MK,
{ intro X, exact ⟨X, pt⟩ },
{ intro X, exact pointed.MK X.1 X.2 },
{ intro x, induction x with X x, reflexivity },
{ intro x, induction x with X x, reflexivity },
end
definition ap_equiv_eq {X Y : Type} {e e' : X ≃ Y} (p : e ~ e') (x : X) :
ap (λ(e : X ≃ Y), e x) (equiv_eq p) = p x :=
begin
cases e with e He, cases e' with e' He', esimp at *, esimp [equiv_eq],
refine homotopy.rec_on' p _, intro q, induction q, esimp [equiv_eq', equiv_mk_eq],
assert H : He = He', apply is_prop.elim, induction H, rewrite [is_prop_elimo_self]
end
definition pequiv.sigma_char_equiv [constructor] (X Y : Type*) :
(X ≃* Y) ≃ Σ(e : X ≃ Y), e pt = pt :=
begin
fapply equiv.MK,
{ intro e, exact ⟨equiv_of_pequiv e, respect_pt e⟩ },
{ intro e, exact pequiv_of_equiv e.1 e.2 },
{ intro e, induction e with e p, fapply sigma_eq,
apply equiv_eq, reflexivity, esimp,
apply eq_pathover_constant_right, esimp,
refine _ ⬝ph vrfl,
apply ap_equiv_eq },
{ intro e, apply pequiv_eq, fapply phomotopy.mk, intro x, reflexivity,
refine !idp_con ⬝ _, reflexivity },
end
definition pequiv.sigma_char_equiv' [constructor] (X Y : Type*) :
(X ≃* Y) ≃ Σ(f : X →* Y), is_equiv f :=
begin
fapply equiv.MK,
{ intro e, exact ⟨ pequiv.to_pmap e , pequiv.to_is_equiv e ⟩ },
{ intro w, exact pequiv_of_pmap w.1 w.2 },
{ intro w, induction w with f p, fapply sigma_eq,
{ reflexivity }, { apply is_prop.elimo } },
{ intro e, apply pequiv_eq, fapply phomotopy.mk,
{ intro x, reflexivity },
{ refine !idp_con ⬝ _, reflexivity } }
end
definition pType_eq_equiv (X Y : Type*) : (X = Y) ≃ (X ≃* Y) :=
begin
refine eq_equiv_fn_eq pType.sigma_char' X Y ⬝e !sigma_eq_equiv ⬝e _, esimp,
transitivity Σ(p : X = Y), cast p pt = pt,
apply sigma_equiv_sigma_right, intro p, apply pathover_equiv_tr_eq,
transitivity Σ(e : X ≃ Y), e pt = pt,
refine sigma_equiv_sigma (eq_equiv_equiv X Y) (λp, equiv.rfl),
exact (pequiv.sigma_char_equiv X Y)⁻¹ᵉ
end
end pointed open pointed
namespace trunc
open trunc_index sigma.ops
definition ptrunctype.sigma_char [constructor] (n : ℕ₋₂) :
n-Type* ≃ Σ(X : Type*), is_trunc n X :=
equiv.MK (λX, ⟨ptrunctype.to_pType X, _⟩)
(λX, ptrunctype.mk (carrier X.1) X.2 pt)
begin intro X, induction X with X HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition is_embedding_ptrunctype_to_pType (n : ℕ₋₂) : is_embedding (@ptrunctype.to_pType n) :=
begin
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
{ exact eq_equiv_fn_eq (ptrunctype.sigma_char n) _ _ ⬝e subtype_eq_equiv _ _ },
intro p, induction p, reflexivity
end
definition ptrunctype_eq_equiv {n : ℕ₋₂} (X Y : n-Type*) : (X = Y) ≃ (X ≃* Y) :=
equiv.mk _ (is_embedding_ptrunctype_to_pType n X Y) ⬝e pType_eq_equiv X Y
/- replace trunc_trunc_equiv_left by this -/
definition trunc_trunc_equiv_left' [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
: trunc n (trunc m A) ≃ trunc n A :=
begin
note H2 := is_trunc_of_le (trunc n A) H,
fapply equiv.MK,
{ intro x, induction x with x, induction x with x, exact tr x },
{ exact trunc_functor n tr },
{ intro x, induction x with x, reflexivity},
{ intro x, induction x with x, induction x with x, reflexivity}
end
definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
: is_equiv (ptrunc_functor n (ptr m A)) :=
to_is_equiv (trunc_trunc_equiv_left' A H)⁻¹ᵉ
definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q :=
tua (equiv_of_is_prop (iff.mp H) (iff.mpr H))
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ :=
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
is_contr_of_inhabited_prop pt
-- TODO: redefine loopn_ptrunc_pequiv
definition apn_ptrunc_functor (n : ℕ₋₂) (k : ) {A B : Type*} (f : A →* B) :
Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~*
(loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity },
{ exact sorry }
end
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
end
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
begin
fapply phomotopy.mk,
{ intro a, induction a with a, reflexivity },
{ apply idp_con }
end
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
is_trunc_trunc_of_is_trunc A n m
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
have is_trunc m A, from is_trunc_of_le A H1,
have is_trunc k A, from is_trunc_of_le A H2,
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
abstract begin
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
end end
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
: ptrunc k X ≃* ptrunc l X :=
pequiv_ap (λ n, ptrunc n X) p
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
: ptrunc k X →* ptrunc l X :=
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
ptrunc.elim _ (ptr l X)
definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
begin cases n with n, exact -2, exact n end
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, exact p a },
{ exact to_homotopy_pt p }
end
definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
(ptrunc n A →* B) ≃ (A →* B) :=
begin
fapply equiv.MK,
{ intro g, exact g ∘* ptr n A },
{ exact ptrunc.elim n },
{ intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr },
{ intro g, apply eq_of_phomotopy,
exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝*
pcompose_pid g }
end
definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
ppmap (ptrunc n A) B ≃* ppmap A B :=
pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A)))
definition loopn_ptrunc_pequiv_nat (n : ) (k : ) (A : Type*) :
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
end trunc open trunc
namespace is_trunc
open trunc_index is_conn
lemma is_trunc_loopn_nat (m n : ) (A : Type*) [H : is_trunc (n + m) A] :
is_trunc n (Ω[m] A) :=
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
lemma is_trunc_loop_nat (n : ) (A : Type*) [H : is_trunc (n + 1) A] :
is_trunc n (Ω A) :=
is_trunc_loop A n
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
transport (λk, is_trunc k A) p H
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
begin
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
refine is_conn.elim -1 _ _, exact H
end
lemma is_trunc_of_is_trunc_loopn (m n : ) (A : Type*) (H : is_trunc n (Ω[m] A))
(H2 : is_conn (m.-1) A) : is_trunc (m + n) A :=
begin
revert A H H2; induction m with m IH: intro A H H2,
{ rewrite [nat.zero_add], exact H },
rewrite [succ_add],
apply is_trunc_succ_succ_of_is_trunc_loop,
{ apply IH,
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
apply is_conn_loop },
exact is_conn_of_le _ (zero_le_of_nat m)
end
lemma is_trunc_of_is_set_loopn (m : ) (A : Type*) (H : is_set (Ω[m] A))
(H2 : is_conn (m.-1) A) : is_trunc m A :=
is_trunc_of_is_trunc_loopn m 0 A H H2
end is_trunc
namespace sigma
open sigma.ops
definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a}
(P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type)
(IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p :=
begin
apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p),
generalize !sigma_eq_equiv p, esimp, intro q,
induction q with q₁ q₂, induction q₂, exact IH
end
definition ap_dpair_eq_dpair_pr {A A' : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (f : Πa, B a → A') (p : a = a') (q : b =[p] b')
: ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q :=
by induction q; reflexivity
definition sigma_eq_equiv_of_is_prop_right [constructor] {A : Type} {B : A → Type} (u v : Σa, B a)
[H : Π a, is_prop (B a)] : u = v ≃ u.1 = v.1 :=
!sigma_eq_equiv ⬝e !sigma_equiv_of_is_contr_right
definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p :=
by induction p; reflexivity
definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a))
(p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 =
change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) :=
by induction p; reflexivity
definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type}
{a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') :
ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) :=
by induction q; reflexivity
definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type}
{a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') :
ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) :=
by induction q; reflexivity
definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a')
(q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) :=
by induction q; reflexivity
definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a')
(q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q :=
by induction p; induction q; reflexivity
definition sigma_eq_concato_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b₁ b₂ : B a'}
(p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' :=
by induction q'; reflexivity
-- open sigma.ops
-- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀}
-- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a}
-- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p :=
-- sorry
-- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type}
-- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'}
-- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' :=
-- begin
-- fapply equiv.MK,
-- { exact pathover_pr1 },
-- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo },
-- { intro q, induction q,
-- have c = c', from !is_prop.elim, induction this,
-- rewrite [▸*, is_prop_elimo_self (C a) c] },
-- { esimp, generalize ⟨b, c⟩, intro x q, }
-- end
--rexact @(ap pathover_pr1) _ idpo _,
definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type}
{B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a))
(g : Πa, B a → B' (f a)) (x : Σa, B a) :
sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x :=
begin
reflexivity
end
definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type}
{f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f')
(k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x :=
sigma_eq (h x.1) (k x.1 x.2)
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type}
{B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type}
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
{g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)}
{g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)}
definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) :
hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂)
(sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) :=
λx, sigma_functor_compose g₂₁ g₁₀ x ⬝
sigma_functor_homotopy h k x ⬝
(sigma_functor_compose g₁₂ g₀₁ x)⁻¹
definition sigma_equiv_of_is_embedding_left_fun [constructor] {X Y : Type} {P : Y → Type}
{f : X → Y} (H : Πy, P y → fiber f y) (v : Σy, P y) : Σx, P (f x) :=
⟨fiber.point (H v.1 v.2), transport P (point_eq (H v.1 v.2))⁻¹ v.2⟩
definition sigma_equiv_of_is_embedding_left_prop [constructor] {X Y : Type} {P : Y → Type}
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_prop (P (f x))) (H : Πy, P y → fiber f y) :
(Σy, P y) ≃ Σx, P (f x) :=
begin
apply equiv.MK (sigma_equiv_of_is_embedding_left_fun H) (sigma_functor f (λa, id)),
{ intro v, induction v with x p, esimp [sigma_equiv_of_is_embedding_left_fun],
fapply sigma_eq, apply @is_injective_of_is_embedding _ _ f, exact point_eq (H (f x) p),
apply is_prop.elimo },
{ intro v, induction v with y p, esimp, fapply sigma_eq, exact point_eq (H y p),
apply tr_pathover }
end
definition sigma_equiv_of_is_embedding_left_contr [constructor] {X Y : Type} {P : Y → Type}
(f : X → Y) (Hf : is_embedding f) (HP : Πx, is_contr (P (f x))) (H : Πy, P y → fiber f y) :
(Σy, P y) ≃ X :=
sigma_equiv_of_is_embedding_left_prop f Hf _ H ⬝e !sigma_equiv_of_is_contr_right
end sigma open sigma
namespace group
definition isomorphism.MK [constructor] {G H : Group} (φ : G →g H) (ψ : H →g G)
(p : φ ∘g ψ ~ gid H) (q : ψ ∘g φ ~ gid G) : G ≃g H :=
isomorphism.mk φ (adjointify φ ψ p q)
protected definition homomorphism.sigma_char [constructor]
(A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f :=
begin
fapply equiv.MK,
{intro F, exact ⟨F, _⟩ },
{intro p, cases p with f H, exact (homomorphism.mk f H) },
{intro p, cases p, reflexivity },
{intro F, cases F, reflexivity },
end
definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a')
{B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a')
(r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply homomorphism.sigma_char },
{ fapply sigma_pathover, exact r, apply is_prop.elimo }
end
protected definition isomorphism.sigma_char [constructor]
(A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f :=
begin
fapply equiv.MK,
{intro F, exact ⟨F, _⟩ },
{intro p, cases p with f H, exact (isomorphism.mk f H) },
{intro p, cases p, reflexivity },
{intro F, cases F, reflexivity },
end
definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a')
{B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a')
(r : pathover (λa, B a → C a) f p g) : f =[p] g :=
begin
fapply pathover_of_fn_pathover_fn,
{ intro a, apply isomorphism.sigma_char },
{ fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo }
end
-- definition is_equiv_isomorphism
-- some extra instances for type class inference
-- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G))
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' _
-- (@ab_group.to_group _ (AbGroup.struct G')) φ :=
-- homomorphism.struct φ
-- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G')
-- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ :=
-- homomorphism.struct φ
definition pgroup_of_Group (X : Group) : pgroup X :=
pgroup_of_group _ idp
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
isomorphism_of_eq (ap F p)
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) :=
begin
reflexivity
end
open option
definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup
| (some x) := G x
| none := trivial_ab_group_lift
definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H :=
trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ
definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B)
(h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) :=
begin
apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x',
induction x with a, induction x' with a', apply ap tr, exact h a a'
end
end group open group
namespace fiber
open pointed sigma sigma.ops
definition loopn_pfiber [constructor] {A B : Type*} (n : ) (f : A →* B) :
Ω[n] (pfiber f) ≃* pfiber (Ω→[n] f) :=
begin
induction n with n IH, reflexivity, exact loop_pequiv_loop IH ⬝e* loop_pfiber (Ω→[n] f),
end
definition fiber_eq_pr2 {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
(p : x = y) : point_eq x = ap f (ap point p) ⬝ point_eq y :=
begin induction p, exact !idp_con⁻¹ end
definition fiber_eq_eta {A B : Type} {f : A → B} {b : B} {x y : fiber f b}
(p : x = y) : p = fiber_eq (ap point p) (fiber_eq_pr2 p) :=
begin induction p, induction x with a q, induction q, reflexivity end
definition fiber_eq_con {A B : Type} {f : A → B} {b : B} {x y z : fiber f b}
(p1 : point x = point y) (p2 : point y = point z)
(q1 : point_eq x = ap f p1 ⬝ point_eq y) (q2 : point_eq y = ap f p2 ⬝ point_eq z) :
fiber_eq p1 q1 ⬝ fiber_eq p2 q2 =
fiber_eq (p1 ⬝ p2) (q1 ⬝ whisker_left (ap f p1) q2 ⬝ !con.assoc⁻¹ ⬝
whisker_right (point_eq z) (ap_con f p1 p2)⁻¹) :=
begin
induction x with a₁ r₁, induction y with a₂ r₂, induction z with a₃ r₃, esimp at *,
induction q2 using eq.rec_symm, induction q1 using eq.rec_symm,
induction p2, induction p1, induction r₃, reflexivity
end
definition fiber_eq_equiv' [constructor] {A B : Type} {f : A → B} {b : B} (x y : fiber f b)
: (x = y) ≃ (Σ(p : point x = point y), point_eq x = ap f p ⬝ point_eq y) :=
@equiv_change_inv _ _ (fiber_eq_equiv x y) (λpq, fiber_eq pq.1 pq.2)
begin intro pq, cases pq, reflexivity end
definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) :=
is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end
definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} {b : B} {b' : B'}
(g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') (x : fiber f b) : fiber f' b' :=
fiber.mk (g (point x)) (H (point x) ⬝ ap h (point_eq x) ⬝ p)
definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'}
(g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' :=
pmap.mk (fiber_functor g h H (respect_pt h))
begin
fapply fiber_eq,
exact respect_pt g,
exact !con.assoc ⬝ to_homotopy_pt H
end
-- TODO: use this in pfiber_pequiv_of_phomotopy
definition fiber_equiv_of_homotopy {A B : Type} {f g : A → B} (h : f ~ g) (b : B)
: fiber f b ≃ fiber g b :=
begin
refine (fiber.sigma_char f b ⬝e _ ⬝e (fiber.sigma_char g b)⁻¹ᵉ),
apply sigma_equiv_sigma_right, intros a,
apply equiv_eq_closed_left, apply h
end
definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} (h : A ≃ C)
(k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d :=
calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose
... ≃ fiber (k ∘ f) d : transport_fiber_equiv (k ∘ f) p
... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d
... ≃ fiber g d : fiber.equiv_precompose
definition fiber_equiv_of_triangle {A B C : Type} {b : B} {f : A → B} {g : C → B} (h : A ≃ C)
(s : f ~ g ∘ h) : fiber f b ≃ fiber g b :=
fiber_equiv_of_square h erfl s idp
definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) :=
λa, is_trunc_of_is_contr _ _
definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) :=
λa, _
open sigma.ops is_conn
definition fiber_compose {A B C : Type} (g : B → C) (f : A → B) (c : C) :
fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) :=
begin
fapply equiv.MK,
{ intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ },
{ intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) },
{ intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q,
induction p, esimp at q, induction q, reflexivity },
{ intro x, induction x with a p, induction p, reflexivity }
end
definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
(Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) :=
λc, is_trunc_equiv_closed_rev k (fiber_compose g f c)
definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
(Hg : is_conn_fun k g) (Hf : is_conn_fun k f) : is_conn_fun k (g ∘ f) :=
λc, is_conn_equiv_closed_rev k (fiber_compose g f c) _
end fiber open fiber
namespace fin
definition lift_succ2 [constructor] ⦃n : ℕ⦄ (x : fin n) : fin (nat.succ n) :=
fin.mk x (le.step (is_lt x))
end fin
namespace function
variables {A B : Type} {f f' : A → B}
open is_conn sigma.ops
definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A)
(HB : is_set B) : is_contr B :=
is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end
definition is_surjective_of_is_contr [constructor] (f : A → B) (a : A) (H : is_contr B) :
is_surjective f :=
λb, image.mk a !eq_of_is_contr
definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B)
(a₀ : A) : is_contr A :=
is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a)))
definition merely_constant {A B : Type} (f : A → B) : Type :=
Σb, Πa, merely (f a = b)
definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) :
merely (f a = pt) :=
tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f))
definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f :=
⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩
definition homotopy_group_isomorphism_of_is_embedding (n : ) [H : is_succ n] {A B : Type*}
(f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism n f),
induction H with n,
apply is_equiv_of_equiv_of_homotopy
(ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)),
exact sorry
end
end function open function
namespace is_conn
open unit trunc_index nat is_trunc pointed.ops sigma.ops prod.ops
definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a'))
definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
is_conn_zero (tr pt) p
definition is_conn_zero_pointed' {A : Type*} (p : Πa : A, ∥ a = pt ∥) : is_conn 0 A :=
is_conn_zero_pointed (λa a', tconcat (p a) (tinverse (p a')))
definition is_conn_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A]
[is_conn (n.+1) B] : is_conn n (fiber f b) :=
is_conn_equiv_closed_rev _ !fiber.sigma_char _
definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B)
(H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) :=
sorry
definition pconntype.sigma_char [constructor] (k : ℕ₋₂) :
Type*[k] ≃ Σ(X : Type*), is_conn k X :=
equiv.MK (λX, ⟨pconntype.to_pType X, _⟩)
(λX, pconntype.mk (carrier X.1) X.2 pt)
begin intro X, induction X with X HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition is_embedding_pconntype_to_pType (k : ℕ₋₂) : is_embedding (@pconntype.to_pType k) :=
begin
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
{ exact eq_equiv_fn_eq (pconntype.sigma_char k) _ _ ⬝e subtype_eq_equiv _ _ },
intro p, induction p, reflexivity
end
definition pconntype_eq_equiv {k : ℕ₋₂} (X Y : Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
equiv.mk _ (is_embedding_pconntype_to_pType k X Y) ⬝e pType_eq_equiv X Y
definition pconntype_eq {k : ℕ₋₂} {X Y : Type*[k]} (e : X ≃* Y) : X = Y :=
(pconntype_eq_equiv X Y)⁻¹ᵉ e
definition ptruncconntype.sigma_char [constructor] (n k : ℕ₋₂) :
n-Type*[k] ≃ Σ(X : Type*), is_trunc n X × is_conn k X :=
equiv.MK (λX, ⟨ptruncconntype._trans_of_to_pconntype_1 X, (_, _)⟩)
(λX, ptruncconntype.mk (carrier X.1) X.2.1 pt X.2.2)
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition ptruncconntype.sigma_char_pconntype [constructor] (n k : ℕ₋₂) :
n-Type*[k] ≃ Σ(X : Type*[k]), is_trunc n X :=
equiv.MK (λX, ⟨ptruncconntype.to_pconntype X, _⟩)
(λX, ptruncconntype.mk (pconntype._trans_of_to_pType X.1) X.2 pt _)
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition is_embedding_ptruncconntype_to_pconntype (n k : ℕ₋₂) :
is_embedding (@ptruncconntype.to_pconntype n k) :=
begin
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
{ exact eq_equiv_fn_eq (ptruncconntype.sigma_char_pconntype n k) _ _ ⬝e subtype_eq_equiv _ _ },
intro p, induction p, reflexivity
end
definition ptruncconntype_eq_equiv {n k : ℕ₋₂} (X Y : n-Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
equiv.mk _ (is_embedding_ptruncconntype_to_pconntype n k X Y) ⬝e
pconntype_eq_equiv X Y
/- duplicate -/
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y :=
(ptruncconntype_eq_equiv X Y)⁻¹ᵉ e
-- definition is_conn_pfiber_of_equiv_on_homotopy_groups (n : ) {A B : pType.{u}} (f : A →* B)
-- [H : is_conn 0 A]
-- (H1 : Πk, k ≤ n → is_equiv (π→[k] f))
-- (H2 : is_surjective (π→[succ n] f)) :
-- is_conn n (pfiber f) :=
-- _
-- definition is_conn_pelim [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
-- (X →* connect k Y) ≃ (X →* Y) :=
/- the k-connected cover of X, the fiber of the map X → ∥X∥ₖ. -/
definition connect (k : ) (X : Type*) : Type* :=
pfiber (ptr k X)
definition is_conn_connect (k : ) (X : Type*) : is_conn k (connect k X) :=
is_conn_fun_tr k X (tr pt)
definition connconnect [constructor] (k : ) (X : Type*) : Type*[k] :=
pconntype.mk (connect k X) (is_conn_connect k X) pt
definition connect_intro [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* Y) : X →* connect k Y :=
pmap.mk (λx, fiber.mk (f x) (is_conn.elim (k.-1) _ (ap tr (respect_pt f)) x))
begin
fapply fiber_eq, exact respect_pt f, apply is_conn.elim_β
end
definition ppoint_connect_intro [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* Y) : ppoint (ptr k Y) ∘* connect_intro H f ~* f :=
begin
induction f with f f₀, induction Y with Y y₀, esimp at (f,f₀), induction f₀,
fapply phomotopy.mk,
{ intro x, reflexivity },
{ symmetry, esimp, apply point_fiber_eq }
end
definition connect_intro_ppoint [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* connect k Y) : connect_intro H (ppoint (ptr k Y) ∘* f) ~* f :=
begin
cases f with f f₀,
-- revert f₀, refine equiv_rect (fiber_eq_equiv' _ _)⁻¹ᵉ _ _,
-- revert f,
-- refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e arrow_equiv_arrow_right _ !fiber.sigma_char⁻¹ᵉ) _ _,
-- intro fg pq, induction pq with p q, induction fg with f g,
-- induction Y with Y y₀, esimp at *, esimp [connect] at (f, p, q), induction p,
fapply phomotopy.mk,
{ intro x, fapply fiber_eq, reflexivity,
refine @is_conn.elim (k.-1) _ _ _ (λx', !is_trunc_eq) _ x,
refine !is_conn.elim_β ⬝ _,
refine _ ⬝ !idp_con⁻¹,
refine !ap_compose⁻¹ ⬝ _,
exact ap_is_constant point_eq f₀ },
{ esimp,
refine whisker_left _ !fiber_eq_eta ⬝ !fiber_eq_con ⬝ apd011 fiber_eq !idp_con _,
esimp,
apply eq_pathover_constant_left,
refine whisker_right _ (whisker_right _ (whisker_right _ !is_conn.elim_β)) ⬝pv _,
exact sorry
--apply move_bot_of_left,
-- refine whisker_right _ _ ⬝ _,
-- refine !is_conn.elim_β ⬝ _,
}
end
definition connect_intro_equiv [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
(X →* connect k Y) ≃ (X →* Y) :=
begin
fapply equiv.MK,
{ intro f, exact ppoint (ptr k Y) ∘* f },
{ intro g, exact connect_intro H g },
{ intro g, apply eq_of_phomotopy, exact ppoint_connect_intro H g },
{ intro f, apply eq_of_phomotopy, exact connect_intro_ppoint H f }
end
definition connect_intro_pequiv [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
ppmap X (connect k Y) ≃* ppmap X Y :=
pequiv_of_equiv (connect_intro_equiv Y H) (eq_of_phomotopy !pcompose_pconst)
definition connect_pequiv {k : } {X : Type*} (H : is_conn k X) : connect k X ≃* X :=
@pfiber_pequiv_of_is_contr _ _ (ptr k X) H
definition loop_connect (k : ) (X : Type*) : Ω (connect (k+1) X) ≃* connect k (Ω X) :=
loop_pfiber (ptr (k+1) X) ⬝e*
pfiber_pequiv_of_square pequiv.rfl (loop_ptrunc_pequiv k X)
(phomotopy_of_phomotopy_pinv_left (ap1_ptr k X))
definition loopn_connect (k : ) (X : Type*) : Ω[k+1] (connect k X) ≃* Ω[k+1] X :=
loopn_pfiber (k+1) (ptr k X) ⬝e*
@pfiber_pequiv_of_is_contr _ _ _ (@is_contr_loop_of_is_trunc (k+1) _ !is_trunc_trunc)
definition is_conn_of_is_conn_succ_nat (n : ) (A : Type) [is_conn (n+1) A] : is_conn n A :=
is_conn_of_is_conn_succ n A
end is_conn
namespace misc
open is_conn
open sigma.ops pointed trunc_index
/- this is equivalent to pfiber (A → ∥A∥₀) ≡ connect 0 A -/
definition component [constructor] (A : Type*) : Type* :=
pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩
lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) :=
is_conn_zero_pointed'
begin intro x, induction x with a p, induction p with p, induction p, exact tidp end
definition component_incl [constructor] (A : Type*) : component A →* A :=
pmap.mk pr1 idp
definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) :=
is_embedding_pr1 _
definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
A →* component B :=
begin
fapply pmap.mk,
{ intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
exact subtype_eq !respect_pt
end
definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B :=
component_intro (f ∘* component_incl A) !merely_constant_of_is_conn
-- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) :
-- A →* component B :=
-- begin
-- fapply pmap.mk,
-- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) },
-- exact subtype_eq !respect_pt
-- end
definition loop_component (A : Type*) : Ω (component A) ≃* Ω A :=
loop_pequiv_loop_of_is_embedding (component_incl A)
lemma loopn_component (n : ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A :=
!loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ*
-- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A :=
-- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _
lemma homotopy_group_component (n : ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A :=
homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A)
definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] :
is_trunc n (component A) :=
begin
apply @is_trunc_sigma, intro a, cases n with n,
{ apply is_contr_of_inhabited_prop, exact tr !is_prop.elim },
{ apply is_trunc_succ_of_is_prop },
end
definition ptrunc_component' (n : ℕ₋₂) (A : Type*) :
ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) :=
begin
fapply pequiv.MK',
{ exact ptrunc.elim (n.+2) (component_functor !ptr) },
{ intro x, cases x with x p, induction x with a,
refine tr ⟨a, _⟩,
note q := trunc_functor -1 !tr_eq_tr_equiv p,
exact trunc_trunc_equiv_left _ !minus_one_le_succ q },
{ exact sorry },
{ exact sorry }
end
definition ptrunc_component (n : ℕ₋₂) (A : Type*) :
ptrunc n (component A) ≃* component (ptrunc n A) :=
begin
cases n with n, exact sorry,
cases n with n, exact sorry,
exact ptrunc_component' n A
end
definition break_into_components (A : Type) : A ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :=
calc
A ≃ Σ(a : A) (x : trunc 0 A), tr a = x :
by exact (@sigma_equiv_of_is_contr_right _ _ (λa, !is_contr_sigma_eq))⁻¹ᵉ
... ≃ Σ(x : trunc 0 A) (a : A), tr a = x :
by apply sigma_comm_equiv
... ≃ Σ(x : trunc 0 A), Σ(a : A), ∥ tr a = x ∥ :
by exact sigma_equiv_sigma_right (λx, sigma_equiv_sigma_right (λa, !trunc_equiv⁻¹ᵉ))
definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B]
/- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A :=
sorry
end misc
namespace sphere
-- definition constant_sphere_map_sphere {n m : } (H : n < m) (f : S n →* S m) :
-- f ~* pconst (S n) (S m) :=
-- begin
-- assert H : is_contr (Ω[n] (S m)),
-- { apply homotopy_group_sphere_le, },
-- apply phomotopy_of_eq,
-- apply eq_of_fn_eq_fn !sphere_pmap_pequiv,
-- apply @is_prop.elim
-- end
end sphere
section injective_surjective
open trunc fiber image
/- do we want to prove this without funext before we move it? -/
variables {A B C : Type} (f : A → B)
definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
is_embedding h → is_embedding f :=
begin
induction H using homotopy.rec_on_idp,
intro E,
fapply is_embedding_of_is_injective,
intro x y p,
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
end
definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
is_surjective h → is_surjective g :=
begin
induction H using homotopy.rec_on_idp,
intro S,
intro c,
note p := S c,
induction p,
apply tr,
fapply fiber.mk,
exact f a,
exact p
end
end injective_surjective
-- Yuri Sulyma's code from HoTT MRC
notation `⅀→`:(max+5) := susp_functor
notation `⅀⇒`:(max+5) := susp_functor_phomotopy
notation `Ω⇒`:(max+5) := ap1_phomotopy
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
begin
induction p using phomotopy_rec_idp,
rewrite ap1_phomotopy_refl,
xrewrite [+refl_symm],
rewrite ap1_phomotopy_refl
end
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
begin
induction p using phomotopy_rec_idp,
induction q using phomotopy_rec_idp,
rewrite trans_refl,
rewrite [+ap1_phomotopy_refl],
rewrite trans_refl
end
namespace pointed
definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ :=
pequiv_of_equiv (bool_equiv_option_unit) idp
definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g)
(p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p :=
to_right_inv !eq_con_inv_equiv_con_eq p
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹*
end pointed
namespace pi
definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) :
hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) :=
begin intro h, esimp end
definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) :
hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g)
end pi
namespace sum
infix ` +→ `:62 := sum_functor
variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ A A' B B' C C' : Type}
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
{g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂}
{h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂}
definition flip_flip (x : A ⊎ B) : flip (flip x) = x :=
begin induction x: reflexivity end
definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) :=
begin intro x, induction x with a b, exact h a, exact k b end
definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) :=
sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b))
definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') :
(g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') :
sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_same_compose (g : B → C) (f : A → B) :
sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_same (f : A → B) :
sum.rec f f ~ f ∘ sum.rec id id :=
sum_rec_same_compose f id
end sum
namespace prod
infix ` ×→ `:63 := prod_functor
infix ` ×≃ `:63 := prod_equiv_prod
end prod
namespace equiv
definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a')
{a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) :
Π(p : P a a'), Q p :=
equiv_rect (e a a') Q H
definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') :
Q a' p :=
rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p
definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) :
rec_idp_of_equiv e r s Q H r = H :=
begin
induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity
end
end equiv
namespace paths
variables {A : Type} {R : A → A → Type} {a₁ a₂ a₃ a₄ : A}
inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| nil {} : Π{a : A}, all T (@nil A R a)
| cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p)
inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p)
inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p)
definition len (p : paths R a₁ a₂) : :=
begin
induction p with a a₁ a₂ a₃ r p IH,
{ exact 0 },
{ exact nat.succ IH }
end
definition mem_equiv_Exists (l : R a₁ a₂) (p : paths R a₃ a₄) :
mem l p ≃ Exists (λa a' r, ⟨a₁, a₂, l⟩ = ⟨a, a', r⟩) p :=
sorry
end paths
namespace list
open is_trunc trunc sigma.ops prod.ops lift
variables {A B X : Type}
definition foldl_homotopy {f g : A → B → A} (h : f ~2 g) (a : A) : foldl f a ~ foldl g a :=
begin
intro bs, revert a, induction bs with b bs p: intro a, reflexivity, esimp [foldl],
exact p (f a b) ⬝ ap010 (foldl g) (h a b) bs
end
definition cons_eq_cons {x x' : X} {l l' : list X} (p : x::l = x'::l') : x = x' × l = l' :=
begin
refine lift.down (list.no_confusion p _), intro q r, split, exact q, exact r
end
definition concat_neq_nil (x : X) (l : list X) : concat x l ≠ nil :=
begin
intro p, cases l: cases p,
end
definition concat_eq_singleton {x x' : X} {l : list X} (p : concat x l = [x']) :
x = x' × l = [] :=
begin
cases l with x₂ l,
{ cases cons_eq_cons p with q r, subst q, split: reflexivity },
{ exfalso, esimp [concat] at p, apply concat_neq_nil x l, revert p, generalize (concat x l),
intro l' p, cases cons_eq_cons p with q r, exact r }
end
definition foldr_concat (f : A → B → B) (b : B) (a : A) (l : list A) :
foldr f b (concat a l) = foldr f (f a b) l :=
begin
induction l with a' l p, reflexivity, rewrite [concat_cons, foldr_cons, p]
end
definition iterated_prod (X : Type.{u}) (n : ) : Type.{u} :=
iterate (prod X) n (lift unit)
definition is_trunc_iterated_prod {k : ℕ₋₂} {X : Type} {n : } (H : is_trunc k X) :
is_trunc k (iterated_prod X n) :=
begin
induction n with n IH,
{ apply is_trunc_of_is_contr, apply is_trunc_lift },
{ exact @is_trunc_prod _ _ _ H IH }
end
definition list_of_iterated_prod {n : } (x : iterated_prod X n) : list X :=
begin
induction n with n IH,
{ exact [] },
{ exact x.1::IH x.2 }
end
definition list_of_iterated_prod_succ {n : } (x : X) (xs : iterated_prod X n) :
@list_of_iterated_prod X (succ n) (x, xs) = x::list_of_iterated_prod xs :=
by reflexivity
definition iterated_prod_of_list (l : list X) : Σn, iterated_prod X n :=
begin
induction l with x l IH,
{ exact ⟨0, up ⋆⟩ },
{ exact ⟨succ IH.1, (x, IH.2)⟩ }
end
definition iterated_prod_of_list_cons (x : X) (l : list X) :
iterated_prod_of_list (x::l) =
⟨succ (iterated_prod_of_list l).1, (x, (iterated_prod_of_list l).2)⟩ :=
by reflexivity
protected definition sigma_char [constructor] (X : Type) : list X ≃ Σ(n : ), iterated_prod X n :=
begin
apply equiv.MK iterated_prod_of_list (λv, list_of_iterated_prod v.2),
{ intro x, induction x with n x, esimp, induction n with n IH,
{ induction x with x, induction x, reflexivity },
{ revert x, change Π(x : X × iterated_prod X n), _, intro xs, cases xs with x xs,
rewrite [list_of_iterated_prod_succ, iterated_prod_of_list_cons],
apply sigma_eq (ap succ (IH xs)..1),
apply pathover_ap, refine prod_pathover _ _ _ _ (IH xs)..2,
apply pathover_of_eq, reflexivity }},
{ intro l, induction l with x l IH,
{ reflexivity },
{ exact ap011 cons idp IH }}
end
local attribute [instance] is_trunc_iterated_prod
definition is_trunc_list [instance] {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) :
is_trunc (n.+2) (list X) :=
begin
assert H : is_trunc (n.+2) (Σ(k : ), iterated_prod X k),
{ apply is_trunc_sigma, apply is_trunc_succ_succ_of_is_set,
intro, exact is_trunc_iterated_prod H },
apply is_trunc_equiv_closed_rev _ (list.sigma_char X),
end
end list
/- namespace logic? -/
namespace decidable
definition double_neg_elim {A : Type} (H : decidable A) (p : ¬ ¬ A) : A :=
begin induction H, assumption, contradiction end
definition dite_true {C : Type} [H : decidable C] {A : Type}
{t : C → A} {e : ¬ C → A} (c : C) (H' : is_prop C) : dite C t e = t c :=
begin
induction H with H H,
exact ap t !is_prop.elim,
contradiction
end
definition dite_false {C : Type} [H : decidable C] {A : Type}
{t : C → A} {e : ¬ C → A} (c : ¬ C) : dite C t e = e c :=
begin
induction H with H H,
contradiction,
exact ap e !is_prop.elim,
end
definition decidable_eq_of_is_prop (A : Type) [is_prop A] : decidable_eq A :=
λa a', decidable.inl !is_prop.elim
definition decidable_eq_sigma [instance] {A : Type} (B : A → Type) [HA : decidable_eq A]
[HB : Πa, decidable_eq (B a)] : decidable_eq (Σa, B a) :=
begin
intro v v', induction v with a b, induction v' with a' b',
cases HA a a' with p np,
{ induction p, cases HB a b b' with q nq,
induction q, exact decidable.inl idp,
apply decidable.inr, intro p, apply nq, apply @eq_of_pathover_idp A B,
exact change_path !is_prop.elim p..2 },
{ apply decidable.inr, intro p, apply np, exact p..1 }
end
open sum
definition decidable_eq_sum [instance] (A B : Type) [HA : decidable_eq A] [HB : decidable_eq B] :
decidable_eq (A ⊎ B) :=
begin
intro v v', induction v with a b: induction v' with a' b',
{ cases HA a a' with p np,
{ exact decidable.inl (ap sum.inl p) },
{ apply decidable.inr, intro p, cases p, apply np, reflexivity }},
{ apply decidable.inr, intro p, cases p },
{ apply decidable.inr, intro p, cases p },
{ cases HB b b' with p np,
{ exact decidable.inl (ap sum.inr p) },
{ apply decidable.inr, intro p, cases p, apply np, reflexivity }},
end
end decidable