Spectral/algebra/exact_couple.hlean
2017-02-08 12:26:23 -05:00

119 lines
4.2 KiB
Text

/-
Copyright (c) 2016 Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Egbert Rijke
Exact couple, derived couples, and so on
-/
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc
equiv
structure is_exact {A B C : AbGroup} (f : A →g B) (g : B →g C) :=
( im_in_ker : Π(a:A), g (f a) = 1)
( ker_in_im : Π(b:B), (g b = 1) → image_subgroup f b)
structure SES (A B C : AbGroup) :=
( f : A →g B)
( g : B →g C)
( Hf : is_embedding f)
( Hg : is_surjective g)
( ex : is_exact f g)
structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') :=
( hA : A →g A')
( hB : B →g B')
( hC : C →g C')
( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA)
( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB)
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
-- begin
-- fapply ab_group_first_iso_thm B C (SES.g ses),
-- end
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
definition right_extend_SES {A B C A' B' C' : AbGroup}
(ses : SES A B C) (ses' : SES A' B' C')
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : C →g C' :=
begin
refine _ ∘g (codomain_surjection_is_quotient (SES.g ses) (SES.Hg ses))⁻¹ᵍ,
refine (codomain_surjection_is_quotient (SES.g ses') (SES.Hg ses')) ∘g _,
fapply ab_group_quotient_homomorphism B B' (kernel_subgroup (SES.g ses)) (kernel_subgroup (SES.g ses')) hB,
intro b,
intro K,
have k : trunctype.carrier (image_subgroup (SES.f ses) b), from is_exact.ker_in_im (SES.ex ses) b K,
induction k, induction a with a p,
rewrite [p⁻¹],
rewrite [htpy1 a],
fapply is_exact.im_in_ker (SES.ex ses') (hA a),
end
definition right_extend_hom_SES {A B C A' B' C' : AbGroup}
(ses : SES A B C) (ses' : SES A' B' C')
(hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) : hom_SES ses ses' :=
begin
fapply hom_SES.mk,
exact hA,
exact hB,
exact right_extend_SES ses ses' hA hB htpy1,
exact htpy1,
exact sorry -- fapply quotient_group_compute,
end
definition is_differential {B : AbGroup} (d : B →g B) := Π(b:B), d (d b) = 1
definition image_subgroup_of_diff {B : AbGroup} (d : B →g B) (H : is_differential d) : subgroup_rel (ab_kernel d) :=
subgroup_rel_of_subgroup (image_subgroup d) (kernel_subgroup d)
begin
intro g p,
induction p with f, induction f with h p,
rewrite [p⁻¹],
esimp,
exact H h
end
definition homology {B : AbGroup} (d : B →g B) (H : is_differential d) : AbGroup :=
@quotient_ab_group (ab_kernel d) (image_subgroup_of_diff d H)
structure exact_couple (A B : AbGroup) : Type :=
( i : A →g A) (j : A →g B) (k : B →g A)
( exact_ij : is_exact i j)
( exact_jk : is_exact j k)
( exact_ki : is_exact k i)
definition differential {A B : AbGroup} (EC : exact_couple A B) : B →g B :=
(exact_couple.j EC) ∘g (exact_couple.k EC)
definition differential_is_differential {A B : AbGroup} (EC : exact_couple A B) : is_differential (differential EC) :=
begin
induction EC,
induction exact_jk,
intro b,
exact (ap (group_fun j) (im_in_ker (group_fun k b))) ⬝ (respect_one j)
end
section derived_couple
variables {A B : AbGroup} (EC : exact_couple A B)
definition derived_couple_A : AbGroup :=
ab_subgroup (image_subgroup (exact_couple.i EC))
definition derived_couple_B : AbGroup :=
homology (differential EC) (differential_is_differential EC)
definition derived_couple_i : derived_couple_A EC →g derived_couple_A EC :=
(image_lift (exact_couple.i EC)) ∘g (image_incl (exact_couple.i EC))
definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
begin
exact sorry,
-- refine (comm_gq_map (comm_kernel (boundary CC)) (image_subgroup_of_bd (boundary CC) (boundary_is_boundary CC))) ∘g _,
end
end derived_couple