blog/src/content/posts/2023-10-10-dtt-project.lagda.md

166 lines
4 KiB
Markdown
Raw Normal View History

2023-10-11 16:48:34 +00:00
---
title: DTT Project
date: 2023-10-11T04:05:23.082Z
draft: true
toc: true
tags:
- type-theory
---
References:
- https://www.cl.cam.ac.uk/~nk480/bidir.pdf
<details>
<summary>
Agda Imports
<small>for the purpose of type-checking</small>
</summary>
```agda
{-# OPTIONS --allow-unsolved-metas --allow-incomplete-matches #-}
open import Data.Nat
open import Data.Product
open import Data.String hiding (_<_)
open import Relation.Nullary using (Dec)
open import Relation.Nullary.Decidable using (True; toWitness)
```
</details>
## Damas-Hindley-Milner type inference
Unification-based algorithm for lambda calculus.
## First try
Implement terms, monotypes, and polytypes:
```agda
data Term : Set
data Type : Set
data Monotype : Set
```
Regular lambda calculus terms:
$e ::= x \mid () \mid \lambda x. e \mid e e \mid (e : A)$
```agda
data Term where
Unit : Term
Var : String → Term
Lambda : String → Term → Term
App : Term → Term → Term
Annot : Term → Type → Term
```
Polytypes are types that may include universal quantifiers ($\forall$)
$A, B, C ::= 1 \mid \alpha \mid \forall \alpha. A \mid A \rightarrow B$
```agda
data Type where
Unit : Type
Var : String → Type
Existential : String → Type
Forall : String → Type → Type
Arrow : Type → Type → Type
```
Monotypes (usually denoted $\tau$) are types that aren't universally quantified.
> [!NOTE]
> In the declarative version of this algorithm, monotypes don't have existential quantifiers either,
> but the algorithmic type system includes it.
> TODO: Explain why
```agda
data Monotype where
Unit : Monotype
Var : String → Monotype
Existential : String → Monotype
Arrow : Monotype → Monotype → Monotype
```
### Contexts
```agda
data Context : Set where
Nil : Context
Var : Context → String → Context
Annot : Context → String → Type → Context
UnsolvedExistential : Context → String → Context
SolvedExistential : Context → String → Monotype → Context
Marker : Context → String → Context
contextLength : Context →
contextLength Nil = zero
contextLength (Var Γ _) = suc (contextLength Γ)
contextLength (Annot Γ _ _) = suc (contextLength Γ)
contextLength (UnsolvedExistential Γ _) = suc (contextLength Γ)
contextLength (SolvedExistential Γ _ _) = suc (contextLength Γ)
contextLength (Marker Γ _) = suc (contextLength Γ)
-- https://plfa.github.io/DeBruijn/#abbreviating-de-bruijn-indices
postulate
lookupVar : (Γ : Context) → (n : ) → (p : n < contextLength Γ) Set
-- lookupVar (Var Γ x) n p = {! !}
-- lookupVar (Annot Γ x x₁) n p = {! !}
-- lookupVar (UnsolvedExistential Γ x) n p = {! !}
-- lookupVar (SolvedExistential Γ x x₁) n p = {! !}
-- lookupVar (Marker Γ x) n p = {! !}
data CompleteContext : Set where
Nil : CompleteContext
Var : CompleteContext → String → CompleteContext
Annot : CompleteContext → String → Type → CompleteContext
SolvedExistential : CompleteContext → String → Monotype → CompleteContext
Marker : CompleteContext → String → CompleteContext
```
2023-10-12 22:22:58 +00:00
### Well-Formedness
```agda
type-well-formed : (A : Type) → Set
type-well-formed Unit = {! !}
type-well-formed (Var x) = {! !}
type-well-formed (Existential x) = {! !}
type-well-formed (Forall x A) = {! !}
type-well-formed (Arrow A A₁) = {! !}
```
2023-10-11 16:48:34 +00:00
### Type checking
```agda
postulate
check : (Γ : Context) → (e : Term) → (A : Type) → Context
```
```agda
-- check Γ Unit A = Γ
```
```agda
-- check Γ (Var x) A = {! !}
-- check Γ (Lambda x e) A = {! !}
-- check Γ (App e e₁) A = {! !}
-- check Γ (Annot e x) A = {! !}
```
### Type synthesizing
```js
const x = () => {};
```
```agda
postulate
synthesize : (Γ : Context) → (e : Term) → (Type × Context)
-- synthesize Γ Unit = Unit , Γ
-- synthesize Γ (Var x) = {! !}
-- synthesize Γ (Lambda x e) = {! !}
-- synthesize Γ (App e e₁) = {! !}
-- synthesize Γ (Annot e x) = {! !}
```