revising Stlc and StlcProp
This commit is contained in:
parent
121c247f43
commit
31aece1144
3 changed files with 59 additions and 122 deletions
|
@ -36,7 +36,6 @@ standard library, wherever they overlap.
|
||||||
open import Data.Nat using (ℕ)
|
open import Data.Nat using (ℕ)
|
||||||
open import Data.Empty using (⊥; ⊥-elim)
|
open import Data.Empty using (⊥; ⊥-elim)
|
||||||
open import Data.Maybe using (Maybe; just; nothing)
|
open import Data.Maybe using (Maybe; just; nothing)
|
||||||
-- open import Data.String using (String)
|
|
||||||
open import Relation.Nullary using (¬_; Dec; yes; no)
|
open import Relation.Nullary using (¬_; Dec; yes; no)
|
||||||
open import Relation.Binary.PropositionalEquality
|
open import Relation.Binary.PropositionalEquality
|
||||||
using (_≡_; refl; _≢_; trans; sym)
|
using (_≡_; refl; _≢_; trans; sym)
|
||||||
|
@ -54,7 +53,7 @@ we repeat its definition here.
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
data Id : Set where
|
data Id : Set where
|
||||||
id : ℕ → Id {- String → Id -}
|
id : ℕ → Id
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
We recall a standard fact of logic.
|
We recall a standard fact of logic.
|
||||||
|
@ -69,7 +68,7 @@ by deciding equality on the underlying strings.
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
_≟_ : (x y : Id) → Dec (x ≡ y)
|
_≟_ : (x y : Id) → Dec (x ≡ y)
|
||||||
id x ≟ id y with x Data.Nat.≟ y {- x Data.String.≟ y -}
|
id x ≟ id y with x Data.Nat.≟ y
|
||||||
id x ≟ id y | yes refl = yes refl
|
id x ≟ id y | yes refl = yes refl
|
||||||
id x ≟ id y | no x≢y = no (contrapositive id-inj x≢y)
|
id x ≟ id y | no x≢y = no (contrapositive id-inj x≢y)
|
||||||
where
|
where
|
||||||
|
@ -77,15 +76,6 @@ id x ≟ id y | no x≢y = no (contrapositive id-inj x≢y)
|
||||||
id-inj refl = refl
|
id-inj refl = refl
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
We define some identifiers for future use.
|
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
x y z : Id
|
|
||||||
x = id 0 -- id "x"
|
|
||||||
y = id 1 -- id "y"
|
|
||||||
z = id 2 -- id "z"
|
|
||||||
\end{code}
|
|
||||||
|
|
||||||
## Total Maps
|
## Total Maps
|
||||||
|
|
||||||
Our main job in this chapter will be to build a definition of
|
Our main job in this chapter will be to build a definition of
|
||||||
|
@ -135,8 +125,8 @@ takes `x` to `v` and takes every other key to whatever `ρ` does.
|
||||||
|
|
||||||
_,_↦_ : ∀ {A} → TotalMap A → Id → A → TotalMap A
|
_,_↦_ : ∀ {A} → TotalMap A → Id → A → TotalMap A
|
||||||
(ρ , x ↦ v) y with x ≟ y
|
(ρ , x ↦ v) y with x ≟ y
|
||||||
... | yes x=y = v
|
... | yes x≡y = v
|
||||||
... | no x≠y = ρ y
|
... | no x≢y = ρ y
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
This definition is a nice example of higher-order programming.
|
This definition is a nice example of higher-order programming.
|
||||||
|
@ -147,15 +137,16 @@ For example, we can build a map taking ids to naturals, where `x`
|
||||||
maps to 42, `y` maps to 69, and every other key maps to 0, as follows:
|
maps to 42, `y` maps to 69, and every other key maps to 0, as follows:
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
|
module example where
|
||||||
|
|
||||||
|
x y z : Id
|
||||||
|
x = id 0
|
||||||
|
y = id 1
|
||||||
|
z = id 2
|
||||||
|
|
||||||
ρ₀ : TotalMap ℕ
|
ρ₀ : TotalMap ℕ
|
||||||
ρ₀ = always 0 , x ↦ 42 , y ↦ 69
|
ρ₀ = always 0 , x ↦ 42 , y ↦ 69
|
||||||
\end{code}
|
|
||||||
|
|
||||||
This completes the definition of total maps. Note that we don't
|
|
||||||
need to define a `find` operation because it is just function
|
|
||||||
application!
|
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
test₁ : ρ₀ x ≡ 42
|
test₁ : ρ₀ x ≡ 42
|
||||||
test₁ = refl
|
test₁ = refl
|
||||||
|
|
||||||
|
@ -166,6 +157,10 @@ application!
|
||||||
test₃ = refl
|
test₃ = refl
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
|
This completes the definition of total maps. Note that we don't
|
||||||
|
need to define a `find` operation because it is just function
|
||||||
|
application!
|
||||||
|
|
||||||
To use maps in later chapters, we'll need several fundamental
|
To use maps in later chapters, we'll need several fundamental
|
||||||
facts about how they behave. Even if you don't work the following
|
facts about how they behave. Even if you don't work the following
|
||||||
exercises, make sure you understand the statements of
|
exercises, make sure you understand the statements of
|
||||||
|
|
|
@ -7,10 +7,10 @@ permalink : /Stlc
|
||||||
This chapter defines the simply-typed lambda calculus.
|
This chapter defines the simply-typed lambda calculus.
|
||||||
|
|
||||||
## Imports
|
## Imports
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
open import Maps using (Id; id; _≟_; PartialMap; module PartialMap)
|
||||||
open PartialMap using (∅) renaming (_,_↦_ to _,_∶_)
|
open PartialMap using (∅) renaming (_,_↦_ to _,_∶_)
|
||||||
-- open import Data.String using (String)
|
|
||||||
open import Data.Nat using (ℕ)
|
open import Data.Nat using (ℕ)
|
||||||
open import Data.Maybe using (Maybe; just; nothing)
|
open import Data.Maybe using (Maybe; just; nothing)
|
||||||
open import Relation.Nullary using (Dec; yes; no)
|
open import Relation.Nullary using (Dec; yes; no)
|
||||||
|
@ -45,8 +45,8 @@ data Term : Set where
|
||||||
Example terms.
|
Example terms.
|
||||||
\begin{code}
|
\begin{code}
|
||||||
f x : Id
|
f x : Id
|
||||||
f = id 0 -- id "f"
|
f = id 0
|
||||||
x = id 1 -- id "x"
|
x = id 1
|
||||||
|
|
||||||
not two : Term
|
not two : Term
|
||||||
not = λ[ x ∶ 𝔹 ] (if var x then false else true)
|
not = λ[ x ∶ 𝔹 ] (if var x then false else true)
|
||||||
|
@ -104,26 +104,6 @@ data _⟹_ : Term → Term → Set where
|
||||||
|
|
||||||
## Reflexive and transitive closure
|
## Reflexive and transitive closure
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
{-
|
|
||||||
Rel : Set → Set₁
|
|
||||||
Rel A = A → A → Set
|
|
||||||
|
|
||||||
infixl 10 _>>_
|
|
||||||
|
|
||||||
data _* {A : Set} (R : Rel A) : Rel A where
|
|
||||||
⟨⟩ : ∀ {x : A} → (R *) x x
|
|
||||||
⟨_⟩ : ∀ {x y : A} → R x y → (R *) x y
|
|
||||||
_>>_ : ∀ {x y z : A} → (R *) x y → (R *) y z → (R *) x z
|
|
||||||
|
|
||||||
infix 10 _⟹*_
|
|
||||||
|
|
||||||
_⟹*_ : Rel Term
|
|
||||||
_⟹*_ = (_⟹_) *
|
|
||||||
-}
|
|
||||||
\end{code}
|
|
||||||
|
|
||||||
## Notation for setting out reductions
|
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
infix 10 _⟹*_
|
infix 10 _⟹*_
|
||||||
|
@ -164,50 +144,6 @@ reduction₂ =
|
||||||
Much of the above, though not all, can be filled in using C-c C-r and C-c C-s.
|
Much of the above, though not all, can be filled in using C-c C-r and C-c C-s.
|
||||||
|
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
{-
|
|
||||||
infixr 2 _⟹⟨_⟩_
|
|
||||||
infix 3 _∎
|
|
||||||
|
|
||||||
_⟹⟨_⟩_ : ∀ L {M N} → L ⟹ M → M ⟹* N → L ⟹* N
|
|
||||||
L ⟹⟨ L⟹M ⟩ M⟹*N = ⟨ L⟹M ⟩ >> M⟹*N
|
|
||||||
|
|
||||||
_∎ : ∀ M → M ⟹* M
|
|
||||||
M ∎ = ⟨⟩
|
|
||||||
-}
|
|
||||||
\end{code}
|
|
||||||
|
|
||||||
## Example reduction derivations
|
|
||||||
|
|
||||||
\begin{code}
|
|
||||||
{-
|
|
||||||
reduction₁ : not · true ⟹* false
|
|
||||||
reduction₁ =
|
|
||||||
not · true
|
|
||||||
⟹⟨ β⇒ value-true ⟩
|
|
||||||
if true then false else true
|
|
||||||
⟹⟨ β𝔹₁ ⟩
|
|
||||||
false
|
|
||||||
∎
|
|
||||||
|
|
||||||
reduction₂ : two · not · true ⟹* true
|
|
||||||
reduction₂ =
|
|
||||||
two · not · true
|
|
||||||
⟹⟨ γ⇒₁ (β⇒ value-λ) ⟩
|
|
||||||
(λ[ x ∶ 𝔹 ] not · (not · var x)) · true
|
|
||||||
⟹⟨ β⇒ value-true ⟩
|
|
||||||
not · (not · true)
|
|
||||||
⟹⟨ γ⇒₂ value-λ (β⇒ value-true) ⟩
|
|
||||||
not · (if true then false else true)
|
|
||||||
⟹⟨ γ⇒₂ value-λ β𝔹₁ ⟩
|
|
||||||
not · false
|
|
||||||
⟹⟨ β⇒ value-false ⟩
|
|
||||||
if false then false else true
|
|
||||||
⟹⟨ β𝔹₂ ⟩
|
|
||||||
true
|
|
||||||
∎
|
|
||||||
-}
|
|
||||||
\end{code}
|
|
||||||
|
|
||||||
## Type rules
|
## Type rules
|
||||||
|
|
||||||
|
@ -255,20 +191,19 @@ We start with the declaration:
|
||||||
typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
typing₁ : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||||
typing₁ = ?
|
typing₁ = ?
|
||||||
|
|
||||||
Typing C-L (control L) causes Agda to create a hole and tell us its
|
Typing C-l causes Agda to create a hole and tell us its expected type.
|
||||||
expected type.
|
|
||||||
|
|
||||||
typing₁ = { }0
|
typing₁ = { }0
|
||||||
?0 : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
?0 : ∅ ⊢ not ∶ 𝔹 ⇒ 𝔹
|
||||||
|
|
||||||
Now we fill in the hole by typing C-R (control R). Agda observes that
|
Now we fill in the hole by typing C-c C-r. Agda observes that
|
||||||
the outermost term in `not` in a `λ`, which is typed using `⇒-I`. The
|
the outermost term in `not` in a `λ`, which is typed using `⇒-I`. The
|
||||||
`⇒-I` rule in turn takes one argument, which Agda leaves as a hole.
|
`⇒-I` rule in turn takes one argument, which Agda leaves as a hole.
|
||||||
|
|
||||||
typing₁ = ⇒-I { }0
|
typing₁ = ⇒-I { }0
|
||||||
?0 : ∅ , x ∶ 𝔹 ⊢ if var x then false else true ∶ 𝔹
|
?0 : ∅ , x ∶ 𝔹 ⊢ if var x then false else true ∶ 𝔹
|
||||||
|
|
||||||
Again we fill in the hole by typing C-R. Agda observes that the
|
Again we fill in the hole by typing C-c C-r. Agda observes that the
|
||||||
outermost term is now `if_then_else_`, which is typed using `𝔹-E`. The
|
outermost term is now `if_then_else_`, which is typed using `𝔹-E`. The
|
||||||
`𝔹-E` rule in turn takes three arguments, which Agda leaves as holes.
|
`𝔹-E` rule in turn takes three arguments, which Agda leaves as holes.
|
||||||
|
|
||||||
|
@ -277,7 +212,7 @@ outermost term is now `if_then_else_`, which is typed using `𝔹-E`. The
|
||||||
?1 : ∅ , x ∶ 𝔹 ⊢ false ∶ 𝔹
|
?1 : ∅ , x ∶ 𝔹 ⊢ false ∶ 𝔹
|
||||||
?2 : ∅ , x ∶ 𝔹 ⊢ true ∶ 𝔹
|
?2 : ∅ , x ∶ 𝔹 ⊢ true ∶ 𝔹
|
||||||
|
|
||||||
Again we fill in the three holes by typing C-R in each. Agda observes
|
Again we fill in the three holes by typing C-c C-r in each. Agda observes
|
||||||
that `var x`, `false`, and `true` are typed using `Ax`, `𝔹-I₂`, and
|
that `var x`, `false`, and `true` are typed using `Ax`, `𝔹-I₂`, and
|
||||||
`𝔹-I₁` respectively. The `Ax` rule in turn takes an argument, to show
|
`𝔹-I₁` respectively. The `Ax` rule in turn takes an argument, to show
|
||||||
that `(∅ , x ∶ 𝔹) x = just 𝔹`, which can in turn be specified with a
|
that `(∅ , x ∶ 𝔹) x = just 𝔹`, which can in turn be specified with a
|
||||||
|
|
|
@ -193,16 +193,16 @@ A variable `x` appears _free_ in a term `M` if `M` contains an
|
||||||
occurrence of `x` that is not bound in an outer lambda abstraction.
|
occurrence of `x` that is not bound in an outer lambda abstraction.
|
||||||
For example:
|
For example:
|
||||||
|
|
||||||
- `x` appears free, but `f` does not, in `λ[ f ∶ (A ⇒ B) ] f · x`
|
- `x` appears free, but `f` does not, in `λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x`
|
||||||
- both `f` and `x` appear free in `(λ[ f ∶ (A ⇒ B) ] f · x) · f`;
|
- both `f` and `x` appear free in `(λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x) · var f`;
|
||||||
note that `f` appears both bound and free in this term
|
note that `f` appears both bound and free in this term
|
||||||
- no variables appear free in `λ[ f ∶ (A ⇒ B) ] (λ[ x ∶ A ] f · x)`
|
- no variables appear free in `λ[ f ∶ (𝔹 ⇒ 𝔹) ] λ[ x ∶ 𝔹 ] var f · var x`
|
||||||
|
|
||||||
Formally:
|
Formally:
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
data _∈_ : Id → Term → Set where
|
data _∈_ : Id → Term → Set where
|
||||||
free-var : ∀ {x} → x ∈ (var x)
|
free-var : ∀ {x} → x ∈ var x
|
||||||
free-λ : ∀ {x y A N} → y ≢ x → x ∈ N → x ∈ (λ[ y ∶ A ] N)
|
free-λ : ∀ {x y A N} → y ≢ x → x ∈ N → x ∈ (λ[ y ∶ A ] N)
|
||||||
free-·₁ : ∀ {x L M} → x ∈ L → x ∈ (L · M)
|
free-·₁ : ∀ {x L M} → x ∈ L → x ∈ (L · M)
|
||||||
free-·₂ : ∀ {x L M} → x ∈ M → x ∈ (L · M)
|
free-·₂ : ∀ {x L M} → x ∈ M → x ∈ (L · M)
|
||||||
|
@ -215,37 +215,44 @@ A term in which no variables appear free is said to be _closed_.
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
_∉_ : Id → Term → Set
|
_∉_ : Id → Term → Set
|
||||||
x ∉ M = x ∈ M → ⊥
|
x ∉ M = ¬ (x ∈ M)
|
||||||
|
|
||||||
closed : Term → Set
|
closed : Term → Set
|
||||||
closed M = ∀ {x} → x ∉ M
|
closed M = ∀ {x} → x ∉ M
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
#### Exercise: 1 star (free-in)
|
Here are proofs corresponding to the first two examples above.
|
||||||
Prove formally the properties listed above.
|
|
||||||
|
|
||||||
\begin{code}
|
\begin{code}
|
||||||
{-
|
f≢x : f ≢ x
|
||||||
example-free₁ : x ∈ (λ[ f ∶ (A ⇒ B) ] f · x)
|
f≢x ()
|
||||||
example-free₁ = ?
|
|
||||||
example-free₂ : f ∉ (λ[ f ∶ (A ⇒ B) ] f · x)
|
example-free₁ : x ∈ (λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x)
|
||||||
example-free₂ = ?
|
example-free₁ = free-λ f≢x (free-·₂ free-var)
|
||||||
example-free₃ : x ∈ (λ[ f ∶ (A ⇒ B) ] f · x)
|
|
||||||
example-free₃ = ?
|
example-free₂ : f ∉ (λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x)
|
||||||
example-free₄ : f ∈ (λ[ f ∶ (A ⇒ B) ] f · x)
|
example-free₂ (free-λ f≢x (free-·₁ free-var)) = f≢x refl
|
||||||
example-free₄ = ?
|
example-free₂ (free-λ f≢x (free-·₂ ()))
|
||||||
-}
|
|
||||||
\end{code}
|
\end{code}
|
||||||
|
|
||||||
|
|
||||||
If the definition of `_∈_` is not crystal clear to
|
#### Exercise: 1 star (free-in)
|
||||||
you, it is a good idea to take a piece of paper and write out the
|
Prove formally the remaining examples given above.
|
||||||
rules in informal inference-rule notation. (Although it is a
|
|
||||||
rather low-level, technical definition, understanding it is
|
\begin{code}
|
||||||
crucial to understanding substitution and its properties, which
|
postulate
|
||||||
are really the crux of the lambda-calculus.)
|
example-free₃ : x ∈ ((λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x) · var f)
|
||||||
|
example-free₄ : f ∈ ((λ[ f ∶ (𝔹 ⇒ 𝔹) ] var f · var x) · var f)
|
||||||
|
example-free₅ : x ∉ (λ[ f ∶ (𝔹 ⇒ 𝔹) ] λ[ x ∶ 𝔹 ] var f · var x)
|
||||||
|
example-free₆ : x ∉ (λ[ f ∶ (𝔹 ⇒ 𝔹) ] λ[ x ∶ 𝔹 ] var f · var x)
|
||||||
|
\end{code}
|
||||||
|
|
||||||
|
Although `_∈_` may apperar to be a low-level technical definition,
|
||||||
|
understanding it is crucial to understanding the properties of
|
||||||
|
substitution, which are really the crux of the lambda calculus.
|
||||||
|
|
||||||
### Substitution
|
### Substitution
|
||||||
|
|
||||||
To prove that substitution preserves typing, we first need a
|
To prove that substitution preserves typing, we first need a
|
||||||
technical lemma connecting free variables and typing contexts: If
|
technical lemma connecting free variables and typing contexts: If
|
||||||
a variable `x` appears free in a term `M`, and if we know `M` is
|
a variable `x` appears free in a term `M`, and if we know `M` is
|
||||||
|
|
Loading…
Reference in a new issue