backup before starting work
This commit is contained in:
parent
516f10827e
commit
4d0cda4a4e
1 changed files with 19 additions and 24 deletions
|
@ -396,11 +396,11 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
Δ′ = Δ , x ⦂ A
|
||||
xs′ = x ∷ xs
|
||||
|
||||
⊢σ′ : ∀ {y B} → y ∈ xs′ → Γ′ ∋ y ⦂ B → Δ′ ∋ y ⦂ B
|
||||
⊢σ′ ∈xs′ Z = Z
|
||||
⊢σ′ ∈xs′ (S x≢y ⊢y) with ∈xs′
|
||||
... | here = ⊥-elim (x≢y refl)
|
||||
... | there ∈xs = S x≢y (⊢σ ∈xs ⊢y)
|
||||
⊢σ′ : ∀ {w B} → w ∈ xs′ → Γ′ ∋ w ⦂ B → Δ′ ∋ w ⦂ B
|
||||
⊢σ′ w∈′ Z = Z
|
||||
⊢σ′ w∈′ (S w≢ ⊢w) = S w≢ (⊢σ ∈w ⊢w)
|
||||
where
|
||||
∈w = there⁻¹ w∈′ w≢
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
|
@ -432,12 +432,9 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
ρ′ = ρ , x ↦ ` y
|
||||
|
||||
Σ′ : ∀ {w} → w ∈ xs′ → free (ρ′ w) ⊆ ys′
|
||||
Σ′ {w} here with w ≟ x
|
||||
... | yes refl = [_]-⊆
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
Σ′ {w} (there w∈) with w ≟ x
|
||||
... | yes refl = [_]-⊆
|
||||
... | no _ = there ∘ (Σ w∈)
|
||||
Σ′ {w} w∈′ with w ≟ x
|
||||
... | yes refl = ⊆-++₁
|
||||
... | no w≢ = ⊆-++₂ ∘ Σ (there⁻¹ w∈′ w≢)
|
||||
|
||||
⊆xs′ : free N ⊆ xs′
|
||||
⊆xs′ = \\-to-∷ ⊆xs
|
||||
|
@ -448,12 +445,12 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
⊢ρ′ : ∀ {w C} → w ∈ xs′ → Γ′ ∋ w ⦂ C → Δ′ ⊢ ρ′ w ⦂ C
|
||||
⊢ρ′ {w} _ Z with w ≟ x
|
||||
... | yes _ = ` Z
|
||||
... | no w≢x = ⊥-elim (w≢x refl)
|
||||
⊢ρ′ {w} w∈′ (S w≢x ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢x refl)
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ′ {w} w∈′ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ⊢rename {Δ} {Δ′} {ys} ⊢σ (Σ w∈) (⊢ρ w∈ ⊢w)
|
||||
where
|
||||
w∈ = lemma₂ w≢x w∈′
|
||||
w∈ = there⁻¹ w∈′ w≢
|
||||
|
||||
⊢subst Σ ⊢ρ ⊆xs (⊢L · ⊢M)
|
||||
= ⊢subst Σ ⊢ρ L⊆ ⊢L · ⊢subst Σ ⊢ρ M⊆ ⊢M
|
||||
|
@ -476,18 +473,16 @@ free-lemma (⊢L · ⊢M) w∈ with ++-to-⊎ w∈
|
|||
|
||||
Σ : ∀ {w} → w ∈ xs → free (ρ w) ⊆ ys
|
||||
Σ {w} w∈ y∈ with w ≟ x
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ with y∈
|
||||
... | here = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
... | there ()
|
||||
... | yes _ = ⊆-++₁ y∈
|
||||
... | no w≢ rewrite ∈-[_] y∈ = ⊆-++₂ (∈-≢-to-\\ w∈ w≢)
|
||||
|
||||
⊢ρ : ∀ {w B} → w ∈ xs → Γ′ ∋ w ⦂ B → Γ ⊢ ρ w ⦂ B
|
||||
⊢ρ {w} w∈ Z with w ≟ x
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢x = ⊥-elim (w≢x refl)
|
||||
⊢ρ {w} w∈ (S w≢x ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢x refl)
|
||||
... | no _ = ` ⊢w
|
||||
... | yes _ = ⊢M
|
||||
... | no w≢ = ⊥-elim (w≢ refl)
|
||||
⊢ρ {w} w∈ (S w≢ ⊢w) with w ≟ x
|
||||
... | yes refl = ⊥-elim (w≢ refl)
|
||||
... | no _ = ` ⊢w
|
||||
|
||||
⊆xs : free N ⊆ xs
|
||||
⊆xs x∈ = x∈
|
||||
|
|
Loading…
Reference in a new issue