improved some proofs

This commit is contained in:
Jeremy Siek 2020-03-10 09:44:41 -04:00
parent 0a94cddd2f
commit 7e514800eb
2 changed files with 20 additions and 19 deletions

View file

@ -172,7 +172,7 @@ the environment `γ` to an equivalent substitution `σ`.
The case for `⇓-app` also requires that we strengthen the The case for `⇓-app` also requires that we strengthen the
conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and conclusion. In the case for `⇓-app` we have `γ ⊢ L ⇓ clos (λ N) δ` and
the induction hypothesis gives us `L —↠ ƛ N`, but we need to know the induction hypothesis gives us `L —↠ ƛ N`, but we need to know
that `N` and `N` are equivalent. In particular, that `N ≡ subst τ N` that `N` and `N` are equivalent. In particular, that `N ≡ subst τ N`
where `τ` is the substitution that is equivalent to `δ`. Therefore we where `τ` is the substitution that is equivalent to `δ`. Therefore we
expand the conclusion of the statement, stating that the results are expand the conclusion of the statement, stating that the results are
equivalent. equivalent.
@ -289,11 +289,11 @@ below.
with ⇓→—↠×≈{σ = τ} δ⊢L⇓V δ≈ₑτ with ⇓→—↠×≈{σ = τ} δ⊢L⇓V δ≈ₑτ
... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL = ... | ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ rewrite σx≡τL =
⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩ ⟨ N , ⟨ τL—↠N , V≈N ⟩ ⟩
⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} ⇓-lam γ≈ₑσ = ⇓→—↠×≈ {σ = σ} {V = clos (ƛ N) γ} (⇓-lam) γ≈ₑσ =
⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩ ⟨ subst σ (ƛ N) , ⟨ subst σ (ƛ N) ∎ , ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ ⟩ ⟩
⇓→—↠×≈{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ ⇓→—↠×≈{Γ}{γ} {σ = σ} {L · M} {V} (⇓-app {N = N} L⇓ƛNδ N⇓V) γ≈ₑσ
with ⇓→—↠×≈{σ = σ} L⇓ƛNδ γ≈ₑσ with ⇓→—↠×≈{σ = σ} L⇓ƛNδ γ≈ₑσ
... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN ... | ⟨ _ , ⟨ σL—↠ƛτN , ⟨ τ , ⟨ δ≈ₑτ , ≡ƛτN ⟩ ⟩ ⟩ ⟩ rewrite ≡ƛτN
with ⇓→—↠×≈ {σ = ext-subst τ (subst σ M)} N⇓V with ⇓→—↠×≈ {σ = ext-subst τ (subst σ M)} N⇓V
(λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x}) (λ {x} → ≈ₑ-ext{σ = τ} δ≈ₑτ ⟨ σ , ⟨ γ≈ₑσ , refl ⟩ ⟩ {x})
| β{∅}{subst (exts τ) N}{subst σ M} | β{∅}{subst (exts τ) N}{subst σ M}

View file

@ -67,7 +67,7 @@ open import Data.Product using (_×_; Σ; Σ-syntax; ∃; ∃-syntax; proj₁; p
renaming (_,_ to ⟨_,_⟩) renaming (_,_ to ⟨_,_⟩)
open import plfa.part2.Substitution using (Rename; Subst) open import plfa.part2.Substitution using (Rename; Subst)
open import plfa.part2.Untyped open import plfa.part2.Untyped
using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; _—→⟨_⟩_; _∎; using (_—→_; β; ξ₁; ξ₂; ζ; _—↠_; begin_; _—→⟨_⟩_; _—↠⟨_⟩_; _∎;
abs-cong; appL-cong; appR-cong; —↠-trans; abs-cong; appL-cong; appR-cong; —↠-trans;
_⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_]; _⊢_; _∋_; `_; #_; _,_; ★; ƛ_; _·_; _[_];
rename; ext; exts; Z; S_; subst; subst-zero) rename; ext; exts; Z; S_; subst; subst-zero)
@ -195,17 +195,19 @@ par-betas : ∀{Γ A}{M N : Γ ⊢ A}
→ M —↠ N → M —↠ N
par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎ par-betas {Γ} {A} {.(` _)} (pvar{x = x}) = (` x) ∎
par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p) par-betas {Γ} {★} {ƛ N} (pabs p) = abs-cong (par-betas p)
par-betas {Γ} {★} {L · M} (papp p₁ p₂) = par-betas {Γ} {★} {L · M} (papp {L = L}{L}{M}{M} p₁ p₂) =
—↠-trans (appL-cong{M = M} (par-betas p₁)) (appR-cong (par-betas p₂)) begin
L · M —↠⟨ appL-cong{M = M} (par-betas p₁) ⟩
L · M —↠⟨ appR-cong (par-betas p₂) ⟩
L · M
par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N = N}{M = M} p₁ p₂) = par-betas {Γ} {★} {(ƛ N) · M} (pbeta{N = N}{M = M} p₁ p₂) =
let ih₁ = par-betas p₁ in begin
let ih₂ = par-betas p₂ in (ƛ N) · M —↠⟨ appL-cong{M = M} (abs-cong (par-betas p₁)) ⟩
let a : (ƛ N) · M —↠ (ƛ N) · M (ƛ N) · M —↠⟨ appR-cong{L = ƛ N} (par-betas p₂) ⟩
a = appL-cong{M = M} (abs-cong ih₁) in (ƛ N) · M —→⟨ β ⟩
let b : (ƛ N) · M —↠ (ƛ N) · M N [ M ]
b = appR-cong{L = ƛ N} ih₂ in
let c = (ƛ N) · M —→⟨ β ⟩ N [ M ] ∎ in
—↠-trans (—↠-trans a b) c
``` ```
The proof is by induction on `M ⇛ N`. The proof is by induction on `M ⇛ N`.
@ -219,14 +221,13 @@ The proof is by induction on `M ⇛ N`.
* Suppose `L · M ⇛ L · M` because `L ⇛ L` and `M ⇛ M`. * Suppose `L · M ⇛ L · M` because `L ⇛ L` and `M ⇛ M`.
By the induction hypothesis, we have `L —↠ L` and `M —↠ M`. By the induction hypothesis, we have `L —↠ L` and `M —↠ M`.
So `L · M —↠ L · M` and then `L · M —↠ L · M` So `L · M —↠ L · M` and then `L · M —↠ L · M`
because `—↠` is a congruence. We conclude using the transitity because `—↠` is a congruence.
of `—↠`.
* Suppose `(ƛ N) · M ⇛ N [ M ]` because `N ⇛ N` and `M ⇛ M`. * Suppose `(ƛ N) · M ⇛ N [ M ]` because `N ⇛ N` and `M ⇛ M`.
By similar reasoning, we have By similar reasoning, we have
`(ƛ N) · M —↠ (ƛ N) · M`. `(ƛ N) · M —↠ (ƛ N) · M`
Of course, `(ƛ N) · M —→ N [ M ]`, so we can conclude which we can following with the β reduction
using the transitivity of `—↠`. `(ƛ N) · M —→ N [ M ]`.
With this lemma in hand, we complete the proof that `M ⇛* N` implies With this lemma in hand, we complete the proof that `M ⇛* N` implies
`M —↠ N` with a simple induction on `M ⇛* N`. `M —↠ N` with a simple induction on `M ⇛* N`.