updated Lambda to PCF
This commit is contained in:
parent
a515aaf289
commit
cab70cb41e
1 changed files with 111 additions and 175 deletions
278
src/Lambda.lagda
278
src/Lambda.lagda
|
@ -30,6 +30,8 @@ Chapter [DeBruijn](DeBruijn), leads to a more compact formulation.
|
|||
Nonetheless, we begin with named variables, partly because such terms
|
||||
are easier to read and partly because the development is more traditional.
|
||||
|
||||
*(((Say something about how I stole from but improved upon SF)))*
|
||||
|
||||
|
||||
## Imports
|
||||
|
||||
|
@ -87,10 +89,10 @@ And here it is formalised in Agda.
|
|||
Id : Set
|
||||
Id = String
|
||||
|
||||
infix 5 ƛ_⇒_
|
||||
infix 5 μ_⇒_
|
||||
infix 6 `suc_
|
||||
infixl 8 _·_
|
||||
infix 6 ƛ_⇒_
|
||||
infix 6 μ_⇒_
|
||||
infixl 7 _·_
|
||||
infix 8 `suc_
|
||||
infix 9 #_
|
||||
|
||||
data Term : Set where
|
||||
|
@ -103,10 +105,11 @@ data Term : Set where
|
|||
μ_⇒_ : Id → Term → Term
|
||||
\end{code}
|
||||
We represent identifiers by strings. We choose precedence so that
|
||||
lambda abstraction and fixpoint bind least tightly, then successor, then application,
|
||||
and tightest of all is the constructor for variables. Case
|
||||
lambda abstraction and fixpoint bind least tightly, then application,
|
||||
then successor, and tightest of all is the constructor for variables. Case
|
||||
expressions are self-bracketing.
|
||||
|
||||
|
||||
### Example terms
|
||||
|
||||
Here are some example terms: the naturals two and four, the recursive
|
||||
|
@ -507,11 +510,8 @@ data _⟹_ : Term → Term → Set where
|
|||
βμ : ∀ {x M}
|
||||
------------------------------
|
||||
→ μ x ⇒ M ⟹ M [ x := μ x ⇒ M ]
|
||||
{-
|
||||
\end{code}
|
||||
|
||||
*(((CONTINUE FROM HERE)))*
|
||||
|
||||
|
||||
#### Quiz
|
||||
|
||||
|
@ -600,34 +600,8 @@ We can read this as follows.
|
|||
The names have been chosen to allow us to lay
|
||||
out example reductions in an appealing way.
|
||||
|
||||
*(((REDUCTION EXAMPLES GO HERE, ONCE I CAN COMPUTE THEM)))*
|
||||
\begin{code}
|
||||
_ : not · true ⟹* false
|
||||
_ =
|
||||
begin
|
||||
not · true
|
||||
⟹⟨ βλ· value-true ⟩
|
||||
if true then false else true
|
||||
⟹⟨ βif-true ⟩
|
||||
false
|
||||
∎
|
||||
|
||||
_ : two · not · true ⟹* true
|
||||
_ =
|
||||
begin
|
||||
two · not · true
|
||||
⟹⟨ ξ·₁ (βλ· value-λ) ⟩
|
||||
(ƛ "x" ⇒ not · (not · # "x")) · true
|
||||
⟹⟨ βλ· value-true ⟩
|
||||
not · (not · true)
|
||||
⟹⟨ ξ·₂ value-λ (βλ· value-true) ⟩
|
||||
not · (if true then false else true)
|
||||
⟹⟨ ξ·₂ value-λ βif-true ⟩
|
||||
not · false
|
||||
⟹⟨ βλ· value-false ⟩
|
||||
if false then false else true
|
||||
⟹⟨ βif-false ⟩
|
||||
true
|
||||
∎
|
||||
\end{code}
|
||||
|
||||
Much of the above, though not all, can be filled in using C-c C-r and C-c C-s.
|
||||
|
@ -638,16 +612,9 @@ Much of the above, though not all, can be filled in using C-c C-r and C-c C-s.
|
|||
We have just two types.
|
||||
|
||||
* Functions, `A ⇒ B`
|
||||
* Natural, `` `ℕ ``
|
||||
* Naturals, `` `ℕ ``
|
||||
|
||||
We require some form of base type, because otherwise the set of types
|
||||
would be empty. The obvious names to use in our object calculus
|
||||
would be `A → B` for functions
|
||||
and `ℕ` for naturals,
|
||||
|
||||
We cannot use the name `ℕ` for the type of naturals in
|
||||
our object calculus, because naturals already have that name in Agda,
|
||||
so we use the name `` `ℕ `` instead.
|
||||
As before, to avoid overlap we use variants of the names used by Agda.
|
||||
|
||||
Here is the syntax of types in BNF.
|
||||
|
||||
|
@ -656,7 +623,7 @@ Here is the syntax of types in BNF.
|
|||
And here it is formalised in Agda.
|
||||
|
||||
\begin{code}
|
||||
infixr 20 _⇒_
|
||||
infixr 6 _⇒_
|
||||
|
||||
data Type : Set where
|
||||
_⇒_ : Type → Type → Type
|
||||
|
@ -670,51 +637,32 @@ currying. This is made more convenient by declaring `_⇒_` to
|
|||
associate to the right and `_·_` to associate to the left.
|
||||
Thus,
|
||||
|
||||
* `(𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹` abbreviates `(𝔹 ⇒ 𝔹) ⇒ (𝔹 ⇒ 𝔹)`
|
||||
* `two · not · true` abbreviates `(two · not) · true`.
|
||||
|
||||
We choose the binding strength for abstractions and conditionals
|
||||
to be weaker than application. For instance,
|
||||
|
||||
* `` ƛ "f" ⇒ ƛ "x" ⇒ # "f" · (# "f" · # "x") ``
|
||||
- denotes `` (ƛ "f" ⇒ (ƛ "x" ⇒ (# "f" · (# "f" · # "x")))) ``
|
||||
- and not `` (ƛ "f" ⇒ (ƛ "x" ⇒ # "f")) · (# "f" · # "x") ``
|
||||
|
||||
\begin{code}
|
||||
_ : (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹 ≡ (𝔹 ⇒ 𝔹) ⇒ (𝔹 ⇒ 𝔹)
|
||||
_ = refl
|
||||
|
||||
_ : two · not · true ≡ (two · not) · true
|
||||
_ = refl
|
||||
|
||||
_ : ƛ "f" ⇒ ƛ "x" ⇒ # "f" · (# "f" · # "x")
|
||||
≡ (ƛ "f" ⇒ (ƛ "x" ⇒ (# "f" · (# "f" · # "x"))))
|
||||
_ = refl
|
||||
\end{code}
|
||||
* ``(`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ`` abbreviates ``((`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ))``
|
||||
* `# "+" · # "m" · # "n"` abbreviates `(# "+" · # "m") · # "n"`.
|
||||
|
||||
### Quiz
|
||||
|
||||
* What is the type of the following term?
|
||||
|
||||
ƛ "f" ⇒ # "f" · (# "f" · true)
|
||||
ƛ "s" ⇒ # "s" · (# "s" · `zero)
|
||||
|
||||
1. `𝔹 ⇒ (𝔹 ⇒ 𝔹)`
|
||||
2. `(𝔹 ⇒ 𝔹) ⇒ 𝔹`
|
||||
3. `𝔹 ⇒ 𝔹 ⇒ 𝔹`
|
||||
4. `𝔹 ⇒ 𝔹`
|
||||
5. `𝔹`
|
||||
1. `` (`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
2. `` (`ℕ ⇒ `ℕ) ⇒ `ℕ ``
|
||||
3. `` `ℕ ⇒ `ℕ ⇒ `ℕ ``
|
||||
4. `` `ℕ ⇒ `ℕ ``
|
||||
5. `` `ℕ ``
|
||||
|
||||
Give more than one answer if appropriate.
|
||||
|
||||
* What is the type of the following term?
|
||||
|
||||
(ƛ "f" ⇒ # "f" · (# "f" · true)) · not
|
||||
(ƛ "s" ⇒ # "s" · (# "s" · `zero)) · (ƛ "m" ⇒ `suc # "m")
|
||||
|
||||
1. `𝔹 ⇒ (𝔹 ⇒ 𝔹)`
|
||||
2. `(𝔹 ⇒ 𝔹) ⇒ 𝔹`
|
||||
3. `𝔹 ⇒ 𝔹 ⇒ 𝔹`
|
||||
4. `𝔹 ⇒ 𝔹`
|
||||
5. `𝔹`
|
||||
1. `` (`ℕ ⇒ `ℕ) ⇒ (`ℕ ⇒ `ℕ) ``
|
||||
2. `` (`ℕ ⇒ `ℕ) ⇒ `ℕ ``
|
||||
3. `` `ℕ ⇒ `ℕ ⇒ `ℕ ``
|
||||
4. `` `ℕ ⇒ `ℕ ``
|
||||
5. `` `ℕ ``
|
||||
|
||||
Give more than one answer if appropriate.
|
||||
|
||||
|
@ -727,6 +675,8 @@ consider terms with free variables. To type a term,
|
|||
we must first type its subterms, and in particular in the
|
||||
body of an abstraction its bound variable may appear free.
|
||||
|
||||
*(((update following later)))*
|
||||
|
||||
In general, we use typing _judgements_ of the form
|
||||
|
||||
Γ ⊢ M ⦂ A
|
||||
|
@ -736,17 +686,17 @@ Environment `Γ` provides types for all the free variables in `M`.
|
|||
|
||||
Here are three examples.
|
||||
|
||||
* `` ∅ , "f" ⦂ 𝔹 ⇒ 𝔹 , "x" ⦂ 𝔹 ⊢ # "f" · (# "f" · # "x") ⦂ 𝔹 ``
|
||||
* `` ∅ , "f" ⦂ 𝔹 ⇒ 𝔹 ⊢ (ƛ "x" ⇒ # "f" · (# "f" · # "x")) ⦂ 𝔹 ⇒ 𝔹 ``
|
||||
* `` ∅ ⊢ ƛ "f" ⇒ ƛ "x" ⇒ # "f" · (# "f" · # "x")) ⦂ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹 ``
|
||||
* `` ∅ , "f" ⦂ `ℕ ⇒ `ℕ , "x" ⦂ `ℕ ⊢ # "f" · (# "f" · # "x") ⦂ `ℕ ``
|
||||
* `` ∅ , "f" ⦂ `ℕ ⇒ `ℕ ⊢ (ƛ "x" ⇒ # "f" · (# "f" · # "x")) ⦂ `ℕ ⇒ `ℕ ``
|
||||
* `` ∅ ⊢ ƛ "f" ⇒ ƛ "x" ⇒ # "f" · (# "f" · # "x")) ⦂ (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ ``
|
||||
|
||||
Environments are partial maps from identifiers to types, built using `∅`
|
||||
for the empty map, and `Γ , x ⦂ A` for the map that extends
|
||||
environment `Γ` by mapping variable `x` to type `A`.
|
||||
|
||||
*It's redundant to have two versions of the rules*
|
||||
*(((It's redundant to have two versions of the rules)))*
|
||||
|
||||
*Need text to explain `Γ ∋ x ⦂ A`*
|
||||
*(((Need text to explain `Γ ∋ x ⦂ A`)))*
|
||||
|
||||
In an informal presentation of the formal semantics,
|
||||
the rules for typing are written as follows.
|
||||
|
@ -764,16 +714,16 @@ the rules for typing are written as follows.
|
|||
-------------- ⇒-E
|
||||
Γ ⊢ L · M ⦂ B
|
||||
|
||||
------------- 𝔹-I₁
|
||||
Γ ⊢ true ⦂ 𝔹
|
||||
------------- `ℕ-I₁
|
||||
Γ ⊢ true ⦂ `ℕ
|
||||
|
||||
-------------- 𝔹-I₂
|
||||
Γ ⊢ false ⦂ 𝔹
|
||||
-------------- `ℕ-I₂
|
||||
Γ ⊢ false ⦂ `ℕ
|
||||
|
||||
Γ ⊢ L : 𝔹
|
||||
Γ ⊢ L : `ℕ
|
||||
Γ ⊢ M ⦂ A
|
||||
Γ ⊢ N ⦂ A
|
||||
-------------------------- 𝔹-E
|
||||
-------------------------- `ℕ-E
|
||||
Γ ⊢ if L then M else N ⦂ A
|
||||
|
||||
As we will show later, the rules are deterministic, in that
|
||||
|
@ -832,128 +782,118 @@ data _⊢_⦂_ : Context → Term → Type → Set where
|
|||
--------------
|
||||
→ Γ ⊢ L · M ⦂ B
|
||||
|
||||
𝔹-I₁ : ∀ {Γ}
|
||||
ℕ-I₁ : ∀ {Γ}
|
||||
-------------
|
||||
→ Γ ⊢ true ⦂ 𝔹
|
||||
→ Γ ⊢ `zero ⦂ `ℕ
|
||||
|
||||
𝔹-I₂ : ∀ {Γ}
|
||||
--------------
|
||||
→ Γ ⊢ false ⦂ 𝔹
|
||||
ℕ-I₂ : ∀ {Γ M}
|
||||
→ Γ ⊢ M ⦂ `ℕ
|
||||
---------------
|
||||
→ Γ ⊢ `suc M ⦂ `ℕ
|
||||
|
||||
𝔹-E : ∀ {Γ L M N A}
|
||||
→ Γ ⊢ L ⦂ 𝔹
|
||||
`ℕ-E : ∀ {Γ L M x N A}
|
||||
→ Γ ⊢ L ⦂ `ℕ
|
||||
→ Γ ⊢ M ⦂ A
|
||||
→ Γ ⊢ N ⦂ A
|
||||
---------------------------
|
||||
→ Γ ⊢ if L then M else N ⦂ A
|
||||
→ Γ , x ⦂ `ℕ ⊢ N ⦂ A
|
||||
--------------------------------------
|
||||
→ Γ ⊢ `case L [zero⇒ M |suc x ⇒ N ] ⦂ A
|
||||
\end{code}
|
||||
|
||||
### Example type derivations
|
||||
|
||||
Here are a couple of typing examples. First, here is how
|
||||
they would be written in an informal description of the
|
||||
Here is a typing example. First, here is how
|
||||
it would be written in an informal description of the
|
||||
formal semantics.
|
||||
|
||||
Derivation of `not`:
|
||||
Derivation of for the Church numeral two:
|
||||
|
||||
------------ Z
|
||||
Γ₀ ∋ "x" ⦂ B
|
||||
-------------- Ax -------------- 𝔹-I₂ ------------- 𝔹-I₁
|
||||
Γ₀ ⊢ # "x" ⦂ 𝔹 Γ₀ ⊢ false ⦂ 𝔹 Γ₀ ⊢ true ⦂ 𝔹
|
||||
------------------------------------------------------ 𝔹-E
|
||||
Γ₀ ⊢ if # "x" then false else true ⦂ 𝔹
|
||||
--------------------------------------------------- ⇒-I
|
||||
∅ ⊢ ƛ "x" ⇒ if # "x" then false else true ⦂ 𝔹 ⇒ 𝔹
|
||||
|
||||
where `Γ₀ = ∅ , x ⦂ 𝔹`.
|
||||
|
||||
Derivation of `two`:
|
||||
|
||||
∋f ∋f ∋x
|
||||
∋s ∋s ∋z
|
||||
------------------- Ax ------------------- Ax --------------- Ax
|
||||
Γ₂ ⊢ # "f" ⦂ 𝔹 ⇒ 𝔹 Γ₂ ⊢ # "f" ⦂ 𝔹 ⇒ 𝔹 Γ₂ ⊢ # "x" ⦂ 𝔹
|
||||
Γ₂ ⊢ # "s" ⦂ `ℕ ⇒ `ℕ Γ₂ ⊢ # "s" ⦂ `ℕ ⇒ `ℕ Γ₂ ⊢ # "z" ⦂ `ℕ
|
||||
------------------- Ax ------------------------------------------ ⇒-E
|
||||
Γ₂ ⊢ # "f" ⦂ 𝔹 ⇒ 𝔹 Γ₂ ⊢ # "f" · # "x" ⦂ 𝔹
|
||||
Γ₂ ⊢ # "s" ⦂ `ℕ ⇒ `ℕ Γ₂ ⊢ # "s" · # "z" ⦂ `ℕ
|
||||
-------------------------------------------------- ⇒-E
|
||||
Γ₂ ⊢ # "f" · (# "f" · # "x") ⦂ 𝔹
|
||||
Γ₂ ⊢ # "s" · (# "s" · # "z") ⦂ `ℕ
|
||||
---------------------------------------------- ⇒-I
|
||||
Γ₁ ⊢ ƛ "x" ⇒ # "f" · (# "f" · # "x") ⦂ 𝔹 ⇒ 𝔹
|
||||
Γ₁ ⊢ ƛ "z" ⇒ # "s" · (# "s" · # "z") ⦂ `ℕ ⇒ `ℕ
|
||||
---------------------------------------------------------- ⇒-I
|
||||
∅ ⊢ ƛ "f" ⇒ ƛ "x" ⇒ # "f" · (# "f" · # "x") ⦂ 𝔹 ⇒ 𝔹
|
||||
∅ ⊢ ƛ "s" ⇒ ƛ "z" ⇒ # "s" · (# "s" · # "z") ⦂ `ℕ ⇒ `ℕ
|
||||
|
||||
Where `∋f` and `∋x` abbreviate the two derivations:
|
||||
Where `∋s` and `∋z` abbreviate the two derivations:
|
||||
|
||||
|
||||
---------------- Z
|
||||
"x" ≢ "f" Γ₁ ∋ "f" ⦂ B ⇒ B
|
||||
"s" ≢ "z" Γ₁ ∋ "s" ⦂ B ⇒ B
|
||||
----------------------------- S ------------- Z
|
||||
Γ₂ ∋ "f" ⦂ B ⇒ B Γ₂ ∋ "x" ⦂ 𝔹
|
||||
Γ₂ ∋ "s" ⦂ B ⇒ B Γ₂ ∋ "z" ⦂ `ℕ
|
||||
|
||||
where `Γ₁ = ∅ , f ⦂ 𝔹 ⇒ 𝔹` and `Γ₂ = ∅ , f ⦂ 𝔹 ⇒ 𝔹 , x ⦂ 𝔹`.
|
||||
where `Γ₁ = ∅ , s ⦂ `ℕ ⇒ `ℕ` and `Γ₂ = ∅ , s ⦂ `ℕ ⇒ `ℕ , z ⦂ `ℕ`.
|
||||
|
||||
Here are the above derivations formalised in Agda.
|
||||
*((( possibly add another example, for plus )))*
|
||||
|
||||
Here is the above derivation formalised in Agda.
|
||||
|
||||
\begin{code}
|
||||
⊢not : ∅ ⊢ not ⦂ 𝔹 ⇒ 𝔹
|
||||
⊢not = ⇒-I (𝔹-E (Ax Z) 𝔹-I₂ 𝔹-I₁)
|
||||
|
||||
⊢two : ∅ ⊢ two ⦂ (𝔹 ⇒ 𝔹) ⇒ 𝔹 ⇒ 𝔹
|
||||
⊢two = ⇒-I (⇒-I (⇒-E (Ax ⊢f) (⇒-E (Ax ⊢f) (Ax ⊢x))))
|
||||
⊢ch2 : ∅ ⊢ ch2 ⦂ (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ
|
||||
⊢ch2 = ⇒-I (⇒-I (⇒-E (Ax ⊢s) (⇒-E (Ax ⊢s) (Ax ⊢z))))
|
||||
where
|
||||
|
||||
f≢x : "f" ≢ "x"
|
||||
f≢x ()
|
||||
s≢z : "s" ≢ "z"
|
||||
s≢z ()
|
||||
|
||||
⊢f = S f≢x Z
|
||||
⊢x = Z
|
||||
⊢s = S s≢z Z
|
||||
⊢z = Z
|
||||
\end{code}
|
||||
|
||||
|
||||
#### Interaction with Agda
|
||||
|
||||
*(((rewrite the followign)))*
|
||||
|
||||
Construction of a type derivation is best done interactively.
|
||||
Start with the declaration:
|
||||
|
||||
⊢not : ∅ ⊢ not ⦂ 𝔹 ⇒ 𝔹
|
||||
⊢not : ∅ ⊢ not ⦂ `ℕ ⇒ `ℕ
|
||||
⊢not = ?
|
||||
|
||||
Typing C-l causes Agda to create a hole and tell us its expected type.
|
||||
|
||||
⊢not = { }0
|
||||
?0 : ∅ ⊢ not ⦂ 𝔹 ⇒ 𝔹
|
||||
?0 : ∅ ⊢ not ⦂ `ℕ ⇒ `ℕ
|
||||
|
||||
Now we fill in the hole by typing C-c C-r. Agda observes that
|
||||
the outermost term in `not` in a `λ`, which is typed using `⇒-I`. The
|
||||
`⇒-I` rule in turn takes one argument, which Agda leaves as a hole.
|
||||
|
||||
⊢not = ⇒-I { }0
|
||||
?0 : ∅ , x ⦂ 𝔹 ⊢ if ` x then false else true ⦂ 𝔹
|
||||
?0 : ∅ , x ⦂ `ℕ ⊢ if ` x then false else true ⦂ `ℕ
|
||||
|
||||
Again we fill in the hole by typing C-c C-r. Agda observes that the
|
||||
outermost term is now `if_then_else_`, which is typed using `𝔹-E`. The
|
||||
`𝔹-E` rule in turn takes three arguments, which Agda leaves as holes.
|
||||
outermost term is now `if_then_else_`, which is typed using ``ℕ-E`. The
|
||||
``ℕ-E` rule in turn takes three arguments, which Agda leaves as holes.
|
||||
|
||||
⊢not = ⇒-I (𝔹-E { }0 { }1 { }2)
|
||||
?0 : ∅ , x ⦂ 𝔹 ⊢ ` x ⦂
|
||||
?1 : ∅ , x ⦂ 𝔹 ⊢ false ⦂ 𝔹
|
||||
?2 : ∅ , x ⦂ 𝔹 ⊢ true ⦂ 𝔹
|
||||
⊢not = ⇒-I (`ℕ-E { }0 { }1 { }2)
|
||||
?0 : ∅ , x ⦂ `ℕ ⊢ ` x ⦂
|
||||
?1 : ∅ , x ⦂ `ℕ ⊢ false ⦂ `ℕ
|
||||
?2 : ∅ , x ⦂ `ℕ ⊢ true ⦂ `ℕ
|
||||
|
||||
Again we fill in the three holes by typing C-c C-r in each. Agda observes
|
||||
that `` ` x ``, `false`, and `true` are typed using `Ax`, `𝔹-I₂`, and
|
||||
`𝔹-I₁` respectively. The `Ax` rule in turn takes an argument, to show
|
||||
that `(∅ , x ⦂ 𝔹) x = just 𝔹`, which can in turn be specified with a
|
||||
that `` ` x ``, `false`, and `true` are typed using `Ax`, ``ℕ-I₂`, and
|
||||
``ℕ-I₁` respectively. The `Ax` rule in turn takes an argument, to show
|
||||
that `(∅ , x ⦂ `ℕ) x = just `ℕ`, which can in turn be specified with a
|
||||
hole. After filling in all holes, the term is as above.
|
||||
|
||||
The entire process can be automated using Agsy, invoked with C-c C-a.
|
||||
|
||||
### Injective
|
||||
### Lookup is injective
|
||||
|
||||
Note that `Γ ∋ x ⦂ A` is injective.
|
||||
\begin{code}
|
||||
∋-injective : ∀ {Γ w A B} → Γ ∋ w ⦂ A → Γ ∋ w ⦂ B → A ≡ B
|
||||
∋-injective : ∀ {Γ x A B} → Γ ∋ x ⦂ A → Γ ∋ x ⦂ B → A ≡ B
|
||||
∋-injective Z Z = refl
|
||||
∋-injective Z (S w≢ _) = ⊥-elim (w≢ refl)
|
||||
∋-injective (S w≢ _) Z = ⊥-elim (w≢ refl)
|
||||
∋-injective (S _ ∋w) (S _ ∋w′) = ∋-injective ∋w ∋w′
|
||||
∋-injective Z (S x≢ _) = ⊥-elim (x≢ refl)
|
||||
∋-injective (S x≢ _) Z = ⊥-elim (x≢ refl)
|
||||
∋-injective (S _ ∋x) (S _ ∋x′) = ∋-injective ∋x ∋x′
|
||||
\end{code}
|
||||
|
||||
The relation `Γ ⊢ M ⦂ A` is not injective. For example, in any `Γ`
|
||||
|
@ -962,26 +902,26 @@ the term `ƛ "x" ⇒ "x"` has type `A ⇒ A` for any type `A`.
|
|||
### Non-examples
|
||||
|
||||
We can also show that terms are _not_ typeable. For example, here is
|
||||
a formal proof that it is not possible to type the term `` true ·
|
||||
false ``. In other words, no type `A` is the type of this term. It
|
||||
a formal proof that it is not possible to type the term `` `suc `zero ·
|
||||
`zero ``. In other words, no type `A` is the type of this term. It
|
||||
cannot be typed, because doing so requires that the first term in the
|
||||
application is both a boolean and a function.
|
||||
application is both a natural and a function.
|
||||
|
||||
\begin{code}
|
||||
ex₁ : ∀ {A} → ¬ (∅ ⊢ true · false ⦂ A)
|
||||
ex₁ (⇒-E () _)
|
||||
nope₁ : ∀ {A} → ¬ (∅ ⊢ `suc `zero · `zero ⦂ A)
|
||||
nope₁ (⇒-E () _)
|
||||
\end{code}
|
||||
|
||||
As a second example, here is a formal proof that it is not possible to
|
||||
type `` ƛ "x" ⇒ # "x" · # "x" `` It cannot be typed, because
|
||||
doing so requires some types `A` and `B` such that `A ⇒ B ≡ A`.
|
||||
doing so requires types `A` and `B` such that `A ⇒ B ≡ A`.
|
||||
|
||||
\begin{code}
|
||||
nope₂ : ∀ {A} → ¬ (∅ ⊢ ƛ "x" ⇒ # "x" · # "x" ⦂ A)
|
||||
nope₂ (⇒-I (⇒-E (Ax ∋x) (Ax ∋x′))) = contradiction (∋-injective ∋x ∋x′)
|
||||
where
|
||||
contradiction : ∀ {A B} → ¬ (A ⇒ B ≡ A)
|
||||
contradiction ()
|
||||
|
||||
ex₂ : ∀ {A} → ¬ (∅ ⊢ ƛ "x" ⇒ # "x" · # "x" ⦂ A)
|
||||
ex₂ (⇒-I (⇒-E (Ax ∋x) (Ax ∋x′))) = contradiction (∋-injective ∋x ∋x′)
|
||||
\end{code}
|
||||
|
||||
|
||||
|
@ -990,15 +930,15 @@ ex₂ (⇒-I (⇒-E (Ax ∋x) (Ax ∋x′))) = contradiction (∋-injective
|
|||
For each of the following, given a type `A` for which it is derivable,
|
||||
or explain why there is no such `A`.
|
||||
|
||||
1. `` ∅ , y ⦂ A ⊢ λ[ x ⦂ 𝔹 ] ` x ⦂ 𝔹 ⇒ 𝔹 ``
|
||||
2. `` ∅ ⊢ λ[ y ⦂ 𝔹 ⇒ 𝔹 ] λ[ x ⦂ 𝔹 ] ` y · ` x ⦂ A ``
|
||||
3. `` ∅ ⊢ λ[ y ⦂ 𝔹 ⇒ 𝔹 ] λ[ x ⦂ 𝔹 ] ` x · ` y ⦂ A ``
|
||||
4. `` ∅ , x ⦂ A ⊢ λ[ y : 𝔹 ⇒ 𝔹 ] `y · `x : A ``
|
||||
1. `` ∅ , y ⦂ A ⊢ λ[ x ⦂ `ℕ ] ` x ⦂ `ℕ ⇒ `ℕ ``
|
||||
2. `` ∅ ⊢ λ[ y ⦂ `ℕ ⇒ `ℕ ] λ[ x ⦂ `ℕ ] ` y · ` x ⦂ A ``
|
||||
3. `` ∅ ⊢ λ[ y ⦂ `ℕ ⇒ `ℕ ] λ[ x ⦂ `ℕ ] ` x · ` y ⦂ A ``
|
||||
4. `` ∅ , x ⦂ A ⊢ λ[ y : `ℕ ⇒ `ℕ ] `y · `x : A ``
|
||||
|
||||
For each of the following, give type `A`, `B`, `C`, and `D` for which it is derivable,
|
||||
or explain why there are no such types.
|
||||
|
||||
1. `` ∅ ⊢ λ[ y ⦂ 𝔹 ⇒ 𝔹 ⇒ 𝔹 ] λ[ x ⦂ 𝔹 ] ` y · ` x ⦂ A ``
|
||||
1. `` ∅ ⊢ λ[ y ⦂ `ℕ ⇒ `ℕ ⇒ `ℕ ] λ[ x ⦂ `ℕ ] ` y · ` x ⦂ A ``
|
||||
2. `` ∅ , x ⦂ A ⊢ x · x ⦂ B ``
|
||||
3. `` ∅ , x ⦂ A , y ⦂ B ⊢ λ[ z ⦂ C ] ` x · (` y · ` z) ⦂ D ``
|
||||
|
||||
|
@ -1020,7 +960,3 @@ This chapter uses the following unicode
|
|||
β U+03B2: GREEK SMALL LETTER BETA (\Gb or \beta)
|
||||
|
||||
Note that ′ (U+2032: PRIME) is not the same as ' (U+0027: APOSTROPHE).
|
||||
|
||||
\begin{code}
|
||||
-}
|
||||
\end{code}
|
||||
|
|
Loading…
Reference in a new issue