Updated Lambda to specify determinism implies the diamond property and confluence, but the diamond property does not imply confluence by itself.e
This commit is contained in:
parent
6bc9ccd609
commit
f04dbd2c65
2 changed files with 121 additions and 2 deletions
120
extra/Issue488.agda
Normal file
120
extra/Issue488.agda
Normal file
|
@ -0,0 +1,120 @@
|
||||||
|
module Issue488 where
|
||||||
|
|
||||||
|
open import Data.Product using (∃-syntax; -,_; _×_; _,_)
|
||||||
|
open import Relation.Nullary using (¬_)
|
||||||
|
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans)
|
||||||
|
|
||||||
|
module CounterExample where
|
||||||
|
|
||||||
|
data Term : Set where
|
||||||
|
A B C D : Term
|
||||||
|
|
||||||
|
data _—→_ : (M N : Term) → Set where
|
||||||
|
B—→C : B —→ C
|
||||||
|
C—→B : C —→ B
|
||||||
|
B—→A : B —→ A
|
||||||
|
C—→D : C —→ D
|
||||||
|
|
||||||
|
infix 2 _—↠_
|
||||||
|
infix 1 begin_
|
||||||
|
infixr 2 _—→⟨_⟩_
|
||||||
|
infix 3 _∎
|
||||||
|
|
||||||
|
data _—↠_ : Term → Term → Set where
|
||||||
|
_∎ : ∀ M
|
||||||
|
---------
|
||||||
|
→ M —↠ M
|
||||||
|
|
||||||
|
_—→⟨_⟩_ : ∀ L {M N}
|
||||||
|
→ L —→ M
|
||||||
|
→ M —↠ N
|
||||||
|
---------
|
||||||
|
→ L —↠ N
|
||||||
|
|
||||||
|
begin_ : ∀ {M N}
|
||||||
|
→ M —↠ N
|
||||||
|
------
|
||||||
|
→ M —↠ N
|
||||||
|
begin M—↠N = M—↠N
|
||||||
|
|
||||||
|
diamond : ∀ {L M N}
|
||||||
|
→ ((L —→ M) × (L —→ N))
|
||||||
|
-----------------------------
|
||||||
|
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
|
||||||
|
diamond (B—→A , B—→A) = -, ((A ∎) , (A ∎))
|
||||||
|
diamond (C—→B , C—→B) = -, ((B ∎) , (B ∎))
|
||||||
|
diamond (B—→C , B—→C) = -, ((C ∎) , (C ∎))
|
||||||
|
diamond (C—→D , C—→D) = -, ((D ∎) , (D ∎))
|
||||||
|
diamond (B—→C , B—→A) = -, ((begin C —→⟨ C—→B ⟩ B —→⟨ B—→A ⟩ A ∎) , (A ∎))
|
||||||
|
diamond (C—→B , C—→D) = -, ((begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎) , (D ∎))
|
||||||
|
diamond (B—→A , B—→C) = -, ((A ∎) , (begin C —→⟨ C—→B ⟩ B —→⟨ B—→A ⟩ A ∎))
|
||||||
|
diamond (C—→D , C—→B) = -, ((D ∎) , (begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎))
|
||||||
|
|
||||||
|
A—↠A : ∀ {P} → A —↠ P → P ≡ A
|
||||||
|
A—↠A (.A ∎) = refl
|
||||||
|
|
||||||
|
D—↠D : ∀ {P} → D —↠ P → P ≡ D
|
||||||
|
D—↠D (.D ∎) = refl
|
||||||
|
|
||||||
|
¬confluence : ¬ (∀ {L M N}
|
||||||
|
→ ((L —↠ M) × (L —↠ N))
|
||||||
|
-----------------------------
|
||||||
|
→ ∃[ P ] ((M —↠ P) × (N —↠ P)))
|
||||||
|
¬confluence confluence
|
||||||
|
with confluence ( (begin B —→⟨ B—→A ⟩ A ∎)
|
||||||
|
, (begin B —→⟨ B—→C ⟩ C —→⟨ C—→D ⟩ D ∎) )
|
||||||
|
... | (P , (A—↠P , D—↠P))
|
||||||
|
with trans (sym (A—↠A A—↠P)) (D—↠D D—↠P)
|
||||||
|
... | ()
|
||||||
|
|
||||||
|
module DeterministicImpliesDiamondPropertyAndConfluence where
|
||||||
|
|
||||||
|
infix 2 _—↠_
|
||||||
|
infix 1 begin_
|
||||||
|
infixr 2 _—→⟨_⟩_
|
||||||
|
infix 3 _∎
|
||||||
|
|
||||||
|
postulate
|
||||||
|
Term : Set
|
||||||
|
_—→_ : Term → Term → Set
|
||||||
|
|
||||||
|
postulate
|
||||||
|
deterministic : ∀ {L M N}
|
||||||
|
→ L —→ M
|
||||||
|
→ L —→ N
|
||||||
|
------
|
||||||
|
→ M ≡ N
|
||||||
|
|
||||||
|
data _—↠_ : Term → Term → Set where
|
||||||
|
_∎ : ∀ M
|
||||||
|
---------
|
||||||
|
→ M —↠ M
|
||||||
|
|
||||||
|
_—→⟨_⟩_ : ∀ L {M N}
|
||||||
|
→ L —→ M
|
||||||
|
→ M —↠ N
|
||||||
|
-------
|
||||||
|
→ L —↠ N
|
||||||
|
|
||||||
|
begin_ : ∀ {M N}
|
||||||
|
→ M —↠ N
|
||||||
|
------
|
||||||
|
→ M —↠ N
|
||||||
|
begin M—↠N = M—↠N
|
||||||
|
|
||||||
|
diamond : ∀ {L M N}
|
||||||
|
→ ((L —→ M) × (L —→ N))
|
||||||
|
--------------------
|
||||||
|
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
|
||||||
|
diamond (L—→M , L—→N)
|
||||||
|
rewrite deterministic L—→M L—→N = -, ((_ ∎) , (_ ∎))
|
||||||
|
|
||||||
|
confluence : ∀ {L M N}
|
||||||
|
→ (L —↠ M)
|
||||||
|
→ (L —↠ N)
|
||||||
|
--------------------
|
||||||
|
→ ∃[ P ] ((M —↠ P) × (N —↠ P))
|
||||||
|
confluence {L} {.L} { N} (.L ∎) L—↠N = -, (L—↠N , (N ∎))
|
||||||
|
confluence {L} { M} {.L} L—↠M (.L ∎) = -, ((M ∎) , L—↠M)
|
||||||
|
confluence {L} { M} { N} (.L —→⟨ L—→M′ ⟩ M′—↠M) (.L —→⟨ L—→N′ ⟩ N′—↠N)
|
||||||
|
rewrite deterministic L—→M′ L—→N′ = confluence M′—↠M N′—↠N
|
|
@ -815,8 +815,7 @@ postulate
|
||||||
```
|
```
|
||||||
|
|
||||||
It is easy to show that every deterministic relation satisfies
|
It is easy to show that every deterministic relation satisfies
|
||||||
the diamond property, and that every relation that satisfies
|
the diamond and confluence properties. Hence, all the reduction
|
||||||
the diamond property is confluent. Hence, all the reduction
|
|
||||||
systems studied in this text are trivially confluent.
|
systems studied in this text are trivially confluent.
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue