2015-04-01 04:45:11 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
Author: Leonardo de Moura
|
|
|
|
|
|
|
|
Quotient types
|
|
|
|
-/
|
|
|
|
prelude
|
2015-04-01 20:04:41 +00:00
|
|
|
import init.sigma init.setoid init.logic
|
2015-04-01 04:45:11 +00:00
|
|
|
open sigma.ops setoid
|
|
|
|
|
|
|
|
constant quot.{l} : Π {A : Type.{l}}, setoid A → Type.{l}
|
2015-04-01 19:36:33 +00:00
|
|
|
-- Remark: if we do not use propext here, then we would need a quot.lift for propositions.
|
|
|
|
constant propext {a b : Prop} : a ↔ b → a = b
|
2015-04-01 04:45:11 +00:00
|
|
|
|
|
|
|
namespace quot
|
|
|
|
constant mk : Π {A : Type} [s : setoid A], A → quot s
|
|
|
|
notation `⟦`:max a `⟧`:0 := mk a
|
|
|
|
|
|
|
|
constant sound : Π {A : Type} [s : setoid A] {a b : A}, a ≈ b → ⟦a⟧ = ⟦b⟧
|
|
|
|
constant exact : Π {A : Type} [s : setoid A] {a b : A}, ⟦a⟧ = ⟦b⟧ → a ≈ b
|
|
|
|
constant lift : Π {A B : Type} [s : setoid A] (f : A → B), (∀ a b, a ≈ b → f a = f b) → quot s → B
|
|
|
|
constant ind : ∀ {A : Type} [s : setoid A] {B : quot s → Prop}, (∀ a, B ⟦a⟧) → ∀ q, B q
|
|
|
|
|
|
|
|
init_quotient
|
|
|
|
|
|
|
|
protected theorem lift_beta {A B : Type} [s : setoid A] (f : A → B) (c : ∀ a b, a ≈ b → f a = f b) (a : A) : lift f c ⟦a⟧ = f a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
protected theorem ind_beta {A : Type} [s : setoid A] {B : quot s → Prop} (p : ∀ a, B ⟦a⟧) (a : A) : ind p ⟦a⟧ = p a :=
|
|
|
|
rfl
|
|
|
|
|
|
|
|
protected definition lift_on [reducible] {A B : Type} [s : setoid A] (q : quot s) (f : A → B) (c : ∀ a b, a ≈ b → f a = f b) : B :=
|
|
|
|
lift f c q
|
|
|
|
|
|
|
|
protected theorem induction_on {A : Type} [s : setoid A] {B : quot s → Prop} (q : quot s) (H : ∀ a, B ⟦a⟧) : B q :=
|
|
|
|
ind H q
|
|
|
|
|
|
|
|
section
|
|
|
|
variable {A : Type}
|
|
|
|
variable [s : setoid A]
|
|
|
|
variable {B : quot s → Type}
|
|
|
|
include s
|
|
|
|
|
|
|
|
protected definition indep [reducible] (f : Π a, B ⟦a⟧) (a : A) : Σ q, B q :=
|
|
|
|
⟨⟦a⟧, f a⟩
|
|
|
|
|
|
|
|
protected lemma indep_coherent (f : Π a, B ⟦a⟧)
|
|
|
|
(H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
|
|
|
: ∀ a b, a ≈ b → indep f a = indep f b :=
|
|
|
|
λa b e, sigma.equal (sound e) (H a b e)
|
|
|
|
|
|
|
|
protected lemma lift_indep_pr1
|
|
|
|
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
|
|
|
(q : quot s) : (lift (indep f) (indep_coherent f H) q).1 = q :=
|
|
|
|
ind (λ a, by esimp) q
|
|
|
|
|
|
|
|
protected definition rec [reducible]
|
|
|
|
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
|
|
|
(q : quot s) : B q :=
|
|
|
|
let p := lift (indep f) (indep_coherent f H) q in
|
|
|
|
eq.rec_on (lift_indep_pr1 f H q) (p.2)
|
|
|
|
|
|
|
|
protected definition rec_on [reducible]
|
|
|
|
(q : quot s) (f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b) : B q :=
|
|
|
|
rec f H q
|
2015-04-01 18:57:39 +00:00
|
|
|
|
|
|
|
protected definition rec_on_subsingleton [reducible]
|
|
|
|
[H : ∀ a, subsingleton (B ⟦a⟧)] (q : quot s) (f : Π a, B ⟦a⟧) : B q :=
|
|
|
|
rec f (λ a b h, !subsingleton.elim) q
|
2015-04-01 04:45:11 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
section
|
|
|
|
variables {A B C : Type}
|
|
|
|
variables [s₁ : setoid A] [s₂ : setoid B]
|
|
|
|
include s₁ s₂
|
|
|
|
|
|
|
|
protected definition lift₂ [reducible]
|
|
|
|
(f : A → B → C)(c : ∀ a₁ a₂ b₁ b₂, a₁ ≈ b₁ → a₂ ≈ b₂ → f a₁ a₂ = f b₁ b₂)
|
|
|
|
(q₁ : quot s₁) (q₂ : quot s₂) : C :=
|
|
|
|
lift
|
|
|
|
(λ a₁, lift (λ a₂, f a₁ a₂) (λ a b H, c a₁ a a₁ b (setoid.refl a₁) H) q₂)
|
|
|
|
(λ a b H, ind (λ a', proof c a a' b a' H (setoid.refl a') qed) q₂)
|
|
|
|
q₁
|
|
|
|
|
|
|
|
protected definition lift_on₂ [reducible]
|
|
|
|
(q₁ : quot s₁) (q₂ : quot s₂) (f : A → B → C) (c : ∀ a₁ a₂ b₁ b₂, a₁ ≈ b₁ → a₂ ≈ b₂ → f a₁ a₂ = f b₁ b₂) : C :=
|
|
|
|
lift₂ f c q₁ q₂
|
|
|
|
|
|
|
|
protected theorem ind₂ {C : quot s₁ → quot s₂ → Prop} (H : ∀ a b, C ⟦a⟧ ⟦b⟧) (q₁ : quot s₁) (q₂ : quot s₂) : C q₁ q₂ :=
|
|
|
|
quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁
|
|
|
|
|
2015-04-01 20:04:41 +00:00
|
|
|
protected theorem induction_on₂
|
|
|
|
{C : quot s₁ → quot s₂ → Prop} (q₁ : quot s₁) (q₂ : quot s₂) (H : ∀ a b, C ⟦a⟧ ⟦b⟧) : C q₁ q₂ :=
|
2015-04-01 04:45:11 +00:00
|
|
|
quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁
|
2015-04-01 20:04:41 +00:00
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
section
|
|
|
|
variables {A B : Type}
|
|
|
|
variables [s₁ : setoid A] [s₂ : setoid B]
|
|
|
|
include s₁ s₂
|
|
|
|
variable {C : quot s₁ → quot s₂ → Type}
|
|
|
|
|
|
|
|
protected definition rec_on_subsingleton₂ [reducible]
|
|
|
|
{C : quot s₁ → quot s₂ → Type₁} [H : ∀ a b, subsingleton (C ⟦a⟧ ⟦b⟧)]
|
|
|
|
(q₁ : quot s₁) (q₂ : quot s₂) (f : Π a b, C ⟦a⟧ ⟦b⟧) : C q₁ q₂:=
|
|
|
|
@quot.rec_on_subsingleton _ _ _
|
|
|
|
(λ a, quot.ind _ _)
|
|
|
|
q₁ (λ a, quot.rec_on_subsingleton q₂ (λ b, f a b))
|
2015-04-01 04:45:11 +00:00
|
|
|
end
|
|
|
|
end quot
|