lean2/hott/algebra/precategory/constructions.hlean

215 lines
7.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
2014-12-12 04:14:53 +00:00
Module: algebra.precategory.constructions
Authors: Floris van Doorn, Jakob von Raumer
2014-12-12 04:14:53 +00:00
This file contains basic constructions on precategories, including common precategories
-/
2014-12-12 04:14:53 +00:00
import .nat_trans
import types.prod types.sigma types.pi
2014-12-12 04:14:53 +00:00
open eq prod eq eq.ops equiv is_trunc
2014-12-12 04:14:53 +00:00
namespace category
2014-12-12 04:14:53 +00:00
namespace opposite
definition opposite [reducible] {ob : Type} (C : precategory ob) : precategory ob :=
precategory.mk (λ a b, hom b a)
(λ a b, !homH)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, !assoc⁻¹)
(λ a b f, !id_right)
(λ a b f, !id_left)
2014-12-12 04:14:53 +00:00
definition Opposite [reducible] (C : Precategory) : Precategory := precategory.Mk (opposite C)
2014-12-12 04:14:53 +00:00
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
2014-12-12 04:14:53 +00:00
variables {C : Precategory} {a b c : C}
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
2014-12-12 04:14:53 +00:00
-- TODO: Decide whether just to use funext for this theorem or
-- take the trick they use in Coq-HoTT, and introduce a further
-- axiom in the definition of precategories that provides thee
-- symmetric associativity proof.
definition op_op' {ob : Type} (C : precategory ob) : opposite (opposite C) = C :=
begin
apply (precategory.rec_on C), intros (hom', homH', comp', ID', assoc', id_left', id_right'),
apply (ap (λassoc'', precategory.mk hom' @homH' comp' ID' assoc'' id_left' id_right')),
repeat (apply eq_of_homotopy ; intros ),
apply ap,
apply (@is_hset.elim), apply !homH',
end
2014-12-12 04:14:53 +00:00
definition op_op : Opposite (Opposite C) = C :=
(ap (Precategory.mk C) (op_op' C)) ⬝ !Precategory.eta
2014-12-12 04:14:53 +00:00
end opposite
-- Note: Discrete precategory doesn't really make sense in HoTT,
-- We'll define a discrete _category_ later.
/-section
open decidable unit empty
variables {A : Type} [H : decidable_eq A]
include H
definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
decidable.rec_on
(H b c)
(λ Hbc g, decidable.rec_on
(H a b)
(λ Hab f, rec_on_true (trans Hab Hbc) ⋆)
(λh f, empty.rec _ f) f)
(λh (g : empty), empty.rec _ g) g
omit H
definition discrete_precategory (A : Type) [H : decidable_eq A] : precategory A :=
mk (λa b, set_hom a b)
(λ a b c g f, set_compose g f)
(λ a, decidable.rec_on_true rfl ⋆)
(λ a b c d h g f, @subsingleton.elim (set_hom a d) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
end
section
open unit bool
definition category_one := discrete_category unit
definition Category_one := Mk category_one
definition category_two := discrete_category bool
definition Category_two := Mk category_two
end-/
namespace product
section
open prod is_trunc
2014-12-12 04:14:53 +00:00
definition prod_precategory [reducible] {obC obD : Type} (C : precategory obC) (D : precategory obD)
2014-12-12 04:14:53 +00:00
: precategory (obC × obD) :=
precategory.mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b, !is_trunc_prod)
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id, id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod_eq !id_left !id_left )
(λ a b f, prod_eq !id_right !id_right)
2014-12-12 04:14:53 +00:00
definition Prod_precategory [reducible] (C D : Precategory) : Precategory :=
precategory.Mk (prod_precategory C D)
2014-12-12 04:14:53 +00:00
end
end product
namespace ops
--notation 1 := Category_one
2014-12-12 04:14:53 +00:00
--notation 2 := Category_two
postfix `ᵒᵖ`:max := opposite.Opposite
infixr `×c`:30 := product.Prod_precategory
--instance [persistent] type_category category_one
-- category_two product.prod_category
end ops
open ops
namespace opposite
open ops functor
definition opposite_functor [reducible] {C D : Precategory} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
begin
2014-12-12 04:14:53 +00:00
apply (@functor.mk (Cᵒᵖ) (Dᵒᵖ)),
intro a, apply (respect_id F),
intros, apply (@respect_comp C D)
end
2014-12-12 04:14:53 +00:00
end opposite
namespace product
section
open ops functor
definition prod_functor [reducible] {C C' D D' : Precategory} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
2014-12-12 04:14:53 +00:00
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
2014-12-12 04:14:53 +00:00
end
end product
definition precategory_hset [reducible] : precategory hset :=
precategory.mk (λx y : hset, x → y)
_
(λx y z g f a, g (f a))
(λx a, a)
(λx y z w h g f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
(λx y f, eq_of_homotopy (λa, idp))
definition Precategory_hset [reducible] : Precategory :=
Precategory.mk hset precategory_hset
section precategory_functor
open morphism functor nat_trans
definition precategory_functor [instance] [reducible] (C D : Precategory)
: precategory (functor C D) :=
precategory.mk (λa b, nat_trans a b)
(λ a b, @nat_trans.to_hset C D a b)
(λ a b c g f, nat_trans.compose g f)
(λ a, nat_trans.id)
(λ a b c d h g f, !nat_trans.assoc)
(λ a b f, !nat_trans.id_left)
(λ a b f, !nat_trans.id_right)
definition Precategory_functor [reducible] (C D : Precategory) : Precategory :=
precategory.Mk (precategory_functor C D)
definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
Precategory_functor D C
/- we prove that if a natural transformation is pointwise an iso, then it is an iso -/
variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)]
include iso
definition nat_trans_inverse : G ⟹ F :=
nat_trans.mk
(λc, (η c)⁻¹)
(λc d f,
begin
apply iso.con_inv_eq_of_eq_con,
apply concat, rotate_left 1, apply assoc,
apply iso.eq_inv_con_of_con_eq,
apply inverse,
apply naturality,
end)
definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = nat_trans.id :=
begin
fapply (apD011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply inverse_compose,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = nat_trans.id :=
begin
fapply (apD011 nat_trans.mk),
apply eq_of_homotopy, intro c, apply compose_inverse,
apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros,
apply is_hset.elim
end
definition nat_trans_is_iso.mk : is_iso η :=
is_iso.mk (nat_trans_left_inverse η) (nat_trans_right_inverse η)
end precategory_functor
2014-12-12 04:14:53 +00:00
namespace ops
infixr `^c`:35 := Precategory_functor_rev
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
2014-12-12 04:14:53 +00:00
end ops
end category