feat(hott): more cleanup of HoTT library

remove funext class,
remove a couple of sorry's,
add characterization of equality in trunctypes,
use Jeremy's format for headers everywhere in the HoTT library,
continue working on Yoneda embedding
This commit is contained in:
Floris van Doorn 2015-02-26 13:19:54 -05:00
parent c091acc55b
commit f513538631
43 changed files with 488 additions and 413 deletions

View file

@ -1,33 +1,45 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
import ..precategory.basic ..precategory.morphism ..precategory.iso
Module: algebra.category.basic
Author: Jakob von Raumer
-/
open precategory morphism is_equiv eq is_trunc nat sigma sigma.ops
import algebra.precategory.iso
-- A category is a precategory extended by a witness,
-- that the function assigning to each isomorphism a path,
open morphism is_equiv eq is_trunc
-- A category is a precategory extended by a witness
-- that the function from paths to isomorphisms,
-- is an equivalecnce.
structure category [class] (ob : Type) extends (precategory ob) :=
(iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b))
attribute category [multiple-instances]
namespace category
variables {ob : Type} {C : category ob} {a b : ob}
structure category [class] (ob : Type) extends parent : precategory ob :=
(iso_of_path_equiv : Π (a b : ob), is_equiv (@iso_of_path ob parent a b))
attribute category [multiple-instances]
abbreviation iso_of_path_equiv := @category.iso_of_path_equiv
definition category.mk' [reducible] (ob : Type) (C : precategory ob)
(H : Π (a b : ob), is_equiv (@iso_of_path ob C a b)) : category ob :=
precategory.rec_on C category.mk H
section basic
variables {ob : Type} [C : category ob]
include C
-- Make iso_of_path_equiv a class instance
-- TODO: Unsafe class instance?
attribute iso_of_path_equiv [instance]
definition path_of_iso {a b : ob} : a ≅ b → a = b :=
definition path_of_iso (a b : ob) : a ≅ b → a = b :=
iso_of_path⁻¹
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
definition ob_1_type : is_trunc (succ nat.zero) ob :=
definition ob_1_type : is_trunc 1 ob :=
begin
apply is_trunc_succ_intro, intros (a, b),
fapply is_trunc_is_equiv_closed,
@ -35,25 +47,27 @@ namespace category
apply is_equiv_inv,
apply is_hset_iso,
end
end basic
-- Bundled version of categories
-- we don't use Category.carrier explicitly, but rather use Precategory.carrier (to_Precategory C)
structure Category : Type :=
(carrier : Type)
(struct : category carrier)
attribute Category.struct [instance] [coercion]
-- definition objects [reducible] := Category.objects
-- definition category_instance [instance] [coercion] [reducible] := Category.category_instance
definition Category.to_Precategory [coercion] [reducible] (C : Category) : Precategory :=
Precategory.mk (Category.carrier C) C
definition category.Mk [reducible] := Category.mk
definition category.MK [reducible] (C : Precategory)
(H : Π (a b : C), is_equiv (@iso_of_path C C a b)) : Category :=
Category.mk C (category.mk' C C H)
definition Category.eta (C : Category) : Category.mk C C = C :=
Category.rec (λob c, idp) C
end category
-- Bundled version of categories
structure Category : Type :=
(objects : Type)
(category_instance : category objects)
namespace category
definition Mk {ob} (C) : Category := Category.mk ob C
--definition MK (a b c d e f g h i) : Category := Category.mk a (category.mk b c d e f g h i)
definition objects [coercion] [reducible] := Category.objects
definition category_instance [instance] [coercion] [reducible] := Category.category_instance
end category
open category
protected definition Category.eta (C : Category) : Category.mk C C = C :=
Category.rec (λob c, idp) C

View file

@ -0,0 +1,33 @@
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.category.constructions
Authors: Floris van Doorn
-/
import .basic algebra.precategory.constructions
open eq prod eq eq.ops equiv is_trunc funext pi category.ops morphism category
namespace category
section hset
definition is_category_hset (a b : Precategory_hset) : is_equiv (@iso_of_path _ _ a b) :=
sorry
definition category_hset [reducible] [instance] : category hset :=
category.mk' hset precategory_hset is_category_hset
definition Category_hset [reducible] : Category :=
Category.mk hset category_hset
--RENAME AND CLEANUP
definition set_category_equiv_iso (a b : Category_hset) : (a ≅ b) = (a ≃ b) := sorry
end hset
namespace ops
abbreviation set := Category_hset
end ops
end category

View file

@ -1,70 +0,0 @@
-- Copyright (c) 2015 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jakob von Raumer
-- Category of sets
import .basic types.pi types.trunc
open is_trunc sigma sigma.ops pi function eq morphism precategory
open equiv
namespace precategory
universe variable l
definition set_precategory : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
begin
fapply precategory.mk.{l+1 l},
intros (a, a_1), apply (a.1 → a_1.1),
intros, apply is_trunc_pi, intros, apply b.2,
intros, intro x, exact (a_1 (a_2 x)),
intros, exact (λ (x : a.1), x),
intros, apply eq_of_homotopy, intro x, apply idp,
intros, apply eq_of_homotopy, intro x, apply idp,
intros, apply eq_of_homotopy, intro x, apply idp,
end
end precategory
namespace category
universe variable l
local attribute precategory.set_precategory.{l+1 l} [instance]
definition set_category_equiv_iso (a b : (Σ (A : Type.{l}), is_hset A))
: (a ≅ b) = (a.1 ≃ b.1) :=
/-begin
apply ua, fapply equiv.mk,
intro H,
apply (isomorphic.rec_on H), intros (H1, H2),
apply (is_iso.rec_on H2), intros (H3, H4, H5),
fapply equiv.mk,
apply (isomorphic.rec_on H), intros (H1, H2),
exact H1,
fapply is_equiv.adjointify, exact H3,
exact sorry,
exact sorry,
end-/ sorry
definition set_category : category.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
/-begin
assert (C : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A)),
apply precategory.set_precategory,
apply category.mk,
assert (p : (λ A B p, (set_category_equiv_iso A B) ▹ iso_of_path p) = (λ A B p, @equiv_of_eq A.1 B.1 p)),
apply is_equiv.adjointify,
intros,
apply (isomorphic.rec_on a_1), intros (iso', is_iso'),
apply (is_iso.rec_on is_iso'), intros (f', f'sect, f'retr),
fapply sigma_eq,
apply ua, fapply equiv.mk, exact iso',
fapply is_equiv.adjointify,
exact f',
intros, apply (f'retr ▹ _),
intros, apply (f'sect ▹ _),
apply (@is_hprop.elim),
apply is_hprop_is_trunc,
intros,
end -/ sorry
end category

View file

@ -1,92 +1,119 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import .precategory.basic .precategory.morphism .group types.pi
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
open eq function prod sigma pi is_trunc morphism nat path_algebra unit prod sigma.ops
Module: algebra.groupoid
Author: Jakob von Raumer
structure foo (A : Type) := (bsp : A)
Ported from Coq HoTT
-/
structure groupoid [class] (ob : Type) extends parent : precategory ob :=
(all_iso : Π ⦃a b : ob⦄ (f : hom a b),
@is_iso ob parent a b f)
import .precategory.morphism .group
namespace groupoid
open eq is_trunc morphism category path_algebra nat unit
attribute all_iso [instance]
namespace category
universe variable l
open precategory
definition groupoid_of_1_type (A : Type.{l})
(H : is_trunc (nat.zero .+1) A) : groupoid.{l l} A :=
groupoid.mk
(λ (a b : A), a = b)
(λ (a b : A), have ish : is_hset (a = b), from is_trunc_eq nat.zero a b, ish)
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
(λ (a : A), refl a)
(λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p)
(λ (a b : A) (p : a = b), con_idp p)
(λ (a b : A) (p : a = b), idp_con p)
(λ (a b : A) (p : a = b), @is_iso.mk A _ a b p (p⁻¹)
!con.left_inv !con.right_inv)
structure groupoid [class] (ob : Type) extends parent : precategory ob :=
(all_iso : Π ⦃a b : ob⦄ (f : hom a b), @is_iso ob parent a b f)
-- A groupoid with a contractible carrier is a group
definition group_of_is_contr_groupoid {ob : Type} (H : is_contr ob)
(G : groupoid ob) : group (hom (center ob) (center ob)) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID (center ob)),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
abbreviation all_iso := @groupoid.all_iso
attribute groupoid.all_iso [instance]
definition group_of_unit_groupoid (G : groupoid unit) : group (hom ⋆ ⋆) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID ⋆),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
definition groupoid.mk' [reducible] (ob : Type) (C : precategory ob)
(H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob :=
precategory.rec_on C groupoid.mk H
-- Conversely we can turn each group into a groupoid on the unit type
definition of_group (A : Type.{l}) [G : group A] : groupoid.{l l} unit :=
begin
fapply groupoid.mk,
intros, exact A,
intros, apply (@group.carrier_hset A G),
intros (a, b, c, g, h), exact (@group.mul A G g h),
intro a, exact (@group.one A G),
intros, exact ((@group.mul_assoc A G h g f)⁻¹),
intros, exact (@group.one_mul A G f),
intros, exact (@group.mul_one A G f),
intros, apply is_iso.mk,
apply mul_left_inv,
apply mul_right_inv,
end
definition groupoid_of_1_type.{l} (A : Type.{l})
[H : is_trunc (succ zero) A] : groupoid.{l l} A :=
groupoid.mk
(λ (a b : A), a = b)
(λ (a b : A), have ish : is_hset (a = b), from is_trunc_eq nat.zero a b, ish)
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
(λ (a : A), refl a)
(λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p)
(λ (a b : A) (p : a = b), con_idp p)
(λ (a b : A) (p : a = b), idp_con p)
(λ (a b : A) (p : a = b), @is_iso.mk A _ a b p (p⁻¹)
!con.left_inv !con.right_inv)
protected definition hom_group {A : Type} [G : groupoid A] (a : A) :
group (hom a a) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID a),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
-- A groupoid with a contractible carrier is a group
definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob]
[G : groupoid ob] : group (hom (center ob) (center ob)) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID (center ob)),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
end groupoid
definition group_of_unit_groupoid [G : groupoid unit] : group (hom ⋆ ⋆) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID ⋆),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
-- Conversely we can turn each group into a groupoid on the unit type
definition of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{l l} unit :=
begin
fapply groupoid.mk,
intros, exact A,
intros, apply (@group.carrier_hset A G),
intros (a, b, c, g, h), exact (@group.mul A G g h),
intro a, exact (@group.one A G),
intros, exact ((@group.mul_assoc A G h g f)⁻¹),
intros, exact (@group.one_mul A G f),
intros, exact (@group.mul_one A G f),
intros, apply is_iso.mk,
apply mul_left_inv,
apply mul_right_inv,
end
protected definition hom_group {A : Type} [G : groupoid A] (a : A) :
group (hom a a) :=
begin
fapply group.mk,
intros (f, g), apply (comp f g),
apply homH,
intros (f, g, h), apply ((assoc f g h)⁻¹),
apply (ID a),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end
-- Bundled version of categories
-- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C)
structure Groupoid : Type :=
(carrier : Type)
(struct : groupoid carrier)
attribute Groupoid.struct [instance] [coercion]
-- definition objects [reducible] := Category.objects
-- definition category_instance [instance] [coercion] [reducible] := Category.category_instance
definition Groupoid.to_Precategory [coercion] [reducible] (C : Groupoid) : Precategory :=
Precategory.mk (Groupoid.carrier C) C
definition groupoid.Mk [reducible] := Groupoid.mk
definition category.MK [reducible] (C : Precategory) (H : Π (a b : C) (f : a ⟶ b), is_iso f)
: Groupoid :=
Groupoid.mk C (groupoid.mk' C C H)
definition Groupoid.eta (C : Groupoid) : Groupoid.mk C C = C :=
Groupoid.rec (λob c, idp) C
end category

View file

@ -1,46 +1,57 @@
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.basic
Authors: Floris van Doorn
-/
open eq is_trunc
structure precategory [class] (ob : Type) : Type :=
(hom : ob → ob → Type)
(homH : Π {a b : ob}, is_hset (hom a b))
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
(ID : Π (a : ob), hom a a)
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp h (comp g f) = comp (comp h g) f)
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
namespace category
attribute precategory [multiple-instances]
structure precategory [class] (ob : Type) : Type :=
(hom : ob → ob → Type)
(homH : Π(a b : ob), is_hset (hom a b))
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
(ID : Π (a : ob), hom a a)
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp h (comp g f) = comp (comp h g) f)
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
namespace precategory
variables {ob : Type} [C : precategory ob]
variables {a b c d : ob}
include C
attribute homH [instance]
attribute precategory [multiple-instances]
attribute precategory.homH [instance]
definition compose [reducible] := comp
definition id [reducible] {a : ob} : hom a a := ID a
infixr `∘` := comp
infixl [parsing-only] `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
infixr `∘` := precategory.comp
-- input ⟶ using \--> (this is a different arrow than \-> (→))
infixl [parsing-only] `⟶`:25 := precategory.hom
namespace hom
infixl `⟶` := hom -- if you open this namespace, hom a b is printed as a ⟶ b
infixl `⟶` := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b
end hom
variables {h : hom c d} {g : hom b c} {f f' : hom a b} {i : hom a a}
abbreviation hom := @precategory.hom
abbreviation homH := @precategory.homH
abbreviation comp := @precategory.comp
abbreviation ID := @precategory.ID
abbreviation assoc := @precategory.assoc
abbreviation id_left := @precategory.id_left
abbreviation id_right := @precategory.id_right
theorem id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left
section basic_lemmas
variables {ob : Type} [C : precategory ob]
variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a}
include C
theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
definition id [reducible] := ID a
definition id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
calc i = i ∘ id : id_right
... = id : H
theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
calc i = id ∘ i : id_left
... = id : H
@ -49,26 +60,29 @@ namespace precategory
definition is_hprop_eq_hom [instance] : is_hprop (f = f') :=
!is_trunc_eq
end basic_lemmas
end precategory
structure Precategory : Type :=
(carrier : Type)
(struct : precategory carrier)
structure Precategory : Type :=
(objects : Type)
(category_instance : precategory objects)
definition precategory.Mk [reducible] {ob} (C) : Precategory := Precategory.mk ob C
definition precategory.MK [reducible] (a b c d e f g h) : Precategory :=
Precategory.mk a (precategory.mk b c d e f g h)
namespace precategory
definition Mk {ob} (C) : Precategory := Precategory.mk ob C
definition MK (a b c d e f g h) : Precategory := Precategory.mk a (precategory.mk b c d e f g h)
abbreviation carrier := @Precategory.carrier
definition objects [coercion] [reducible] := Precategory.objects
definition category_instance [instance] [coercion] [reducible] := Precategory.category_instance
notation g `∘⁅` C `⁆` f := @compose (objects C) (category_instance C) _ _ _ g f
attribute Precategory.carrier [coercion]
attribute Precategory.struct [instance] [priority 10000] [coercion]
-- definition precategory.carrier [coercion] [reducible] := Precategory.carrier
-- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct
notation g `∘⁅` C `⁆` f := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f
-- TODO: make this left associative
-- TODO: change this notation?
end precategory
definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
Precategory.rec (λob c, idp) C
open precategory
end category
protected definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
Precategory.rec (λob c, idp) C
open category

View file

@ -13,27 +13,27 @@ import types.prod types.sigma types.pi
open eq prod eq eq.ops equiv is_trunc
namespace precategory
namespace category
namespace opposite
definition opposite [reducible] {ob : Type} (C : precategory ob) : precategory ob :=
mk (λ a b, hom b a)
(λ b a, !homH)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, !assoc⁻¹)
(λ a b f, !id_right)
(λ a b f, !id_left)
precategory.mk (λ a b, hom b a)
(λ a b, !homH)
(λ a b c f g, g ∘ f)
(λ a, id)
(λ a b c d f g h, !assoc⁻¹)
(λ a b f, !id_right)
(λ a b f, !id_left)
definition Opposite [reducible] (C : Precategory) : Precategory := Mk (opposite C)
definition Opposite [reducible] (C : Precategory) : Precategory := precategory.Mk (opposite C)
infixr `∘op`:60 := @compose _ (opposite _) _ _ _
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
variables {C : Precategory} {a b c : C}
set_option apply.class_instance false -- disable class instance resolution in the apply tactic
theorem compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f := idp
-- TODO: Decide whether just to use funext for this theorem or
-- take the trick they use in Coq-HoTT, and introduce a further
@ -91,17 +91,18 @@ namespace precategory
section
open prod is_trunc
definition prod_precategory [reducible] [instance] {obC obD : Type} (C : precategory obC) (D : precategory obD)
definition prod_precategory [reducible] {obC obD : Type} (C : precategory obC) (D : precategory obD)
: precategory (obC × obD) :=
mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b, !is_trunc_prod)
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id, id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod_eq !id_left !id_left )
(λ a b f, prod_eq !id_right !id_right)
precategory.mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b, !is_trunc_prod)
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id, id))
(λ a b c d h g f, pair_eq !assoc !assoc )
(λ a b f, prod_eq !id_left !id_left )
(λ a b f, prod_eq !id_right !id_right)
definition Prod_precategory [reducible] (C D : Precategory) : Precategory := Mk (prod_precategory C D)
definition Prod_precategory [reducible] (C D : Precategory) : Precategory :=
precategory.Mk (prod_precategory C D)
end
end product
@ -113,8 +114,6 @@ namespace precategory
infixr `×c`:30 := product.Prod_precategory
--instance [persistent] type_category category_one
-- category_two product.prod_category
attribute product.prod_precategory [instance]
end ops
open ops
@ -156,16 +155,16 @@ namespace precategory
open morphism functor nat_trans
definition precategory_functor [instance] [reducible] (C D : Precategory)
: precategory (functor C D) :=
mk (λa b, nat_trans a b)
(λ a b, @nat_trans.to_hset C D a b)
(λ a b c g f, nat_trans.compose g f)
(λ a, nat_trans.id)
(λ a b c d h g f, !nat_trans.assoc)
(λ a b f, !nat_trans.id_left)
(λ a b f, !nat_trans.id_right)
precategory.mk (λa b, nat_trans a b)
(λ a b, @nat_trans.to_hset C D a b)
(λ a b c g f, nat_trans.compose g f)
(λ a, nat_trans.id)
(λ a b c d h g f, !nat_trans.assoc)
(λ a b f, !nat_trans.id_left)
(λ a b f, !nat_trans.id_right)
definition Precategory_functor [reducible] (C D : Precategory) : Precategory :=
Mk (precategory_functor C D)
precategory.Mk (precategory_functor C D)
definition Precategory_functor_rev [reducible] (C D : Precategory) : Precategory :=
Precategory_functor D C
@ -206,11 +205,10 @@ namespace precategory
end precategory_functor
namespace ops
abbreviation set := Precategory_hset
infixr `^c`:35 := Precategory_functor_rev
infixr `×f`:30 := product.prod_functor
infixr `ᵒᵖᶠ`:(max+1) := opposite.opposite_functor
end ops
end precategory
end category

View file

@ -1,10 +1,14 @@
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.functor
Authors: Floris van Doorn, Jakob von Raumer
-/
import .basic types.pi
open function precategory eq prod equiv is_equiv sigma sigma.ops is_trunc funext
open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext
open pi
structure functor (C D : Precategory) : Type :=
@ -134,7 +138,7 @@ namespace functor
end
protected definition strict_cat_has_functor_hset
[HD : is_hset (objects D)] : is_hset (functor C D) :=
[HD : is_hset D] : is_hset (functor C D) :=
begin
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
apply sigma_char,
@ -151,10 +155,12 @@ namespace functor
end functor
namespace precategory
namespace category
open functor
definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset (objects C)) :=
--TODO: make this a structure
definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset C) :=
precategory.mk (λ a b, functor a.1 b.1)
(λ a b, @functor.strict_cat_has_functor_hset a.1 b.1 b.2)
(λ a b c g f, functor.compose g f)
@ -163,13 +169,13 @@ namespace precategory
(λ a b f, !functor.id_left)
(λ a b f, !functor.id_right)
definition Precat_of_strict_cats := Mk precat_of_strict_precats
definition Precat_of_strict_cats := precategory.Mk precat_of_strict_precats
namespace ops
abbreviation PreCat := Precat_of_strict_cats
attribute precat_of_strict_precats [instance]
--attribute precat_of_strict_precats [instance]
end ops
end precategory
end category

View file

@ -1,10 +1,14 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.iso
Authors: Floris van Doorn, Jakob von Raumer
-/
import .basic .morphism types.sigma
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
open eq category sigma sigma.ops equiv is_equiv function is_trunc
open prod
namespace morphism
@ -62,7 +66,7 @@ namespace morphism
end
-- In a precategory, equal objects are isomorphic
definition iso_of_path (p : a = b) : isomorphic a b :=
definition iso_of_path (p : a = b) : a ≅ b :=
eq.rec_on p (isomorphic.mk id)
end morphism

View file

@ -1,14 +1,20 @@
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.morphism
Authors: Floris van Doorn, Jakob von Raumer
-/
import .basic
open eq precategory sigma sigma.ops equiv is_equiv function is_trunc
open eq category sigma sigma.ops equiv is_equiv function is_trunc
namespace morphism
variables {ob : Type} [C : precategory ob] include C
variables {ob : Type} [C : precategory ob]
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
include C
inductive is_section [class] (f : a ⟶ b) : Type
:= mk : ∀{g}, g ∘ f = id → is_section f
inductive is_retraction [class] (f : a ⟶ b) : Type
@ -80,7 +86,7 @@ namespace morphism
theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' :=
inverse_eq_intro_left !inverse_compose
theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f :=
theorem inverse_involutive (f : a ⟶ b) [H1 : is_iso f] [H2 : is_iso (f⁻¹)] : (f⁻¹)⁻¹ = f :=
inverse_eq_intro_right !inverse_compose
theorem retraction_of_id : retraction_of (ID a) = id :=

View file

@ -1,25 +1,24 @@
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn, Jakob von Raumer
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.nat_trans
Author: Floris van Doorn, Jakob von Raumer
-/
import .functor .morphism
open eq precategory functor is_trunc equiv sigma.ops sigma is_equiv function pi funext
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext
inductive nat_trans {C D : Precategory} (F G : C ⇒ D) : Type :=
mk : Π (η : Π (a : C), hom (F a) (G a))
(nat : Π {a b : C} (f : hom a b), G f ∘ η a = η b ∘ F f),
nat_trans F G
structure nat_trans {C D : Precategory} (F G : C ⇒ D) :=
(natural_map : Π (a : C), hom (F a) (G a))
(naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f)
namespace nat_trans
infixl `⟹`:25 := nat_trans -- \==>
variables {C D : Precategory} {F G H I : C ⇒ D}
definition natural_map [coercion] (η : F ⟹ G) : Π (a : C), F a ⟶ G a :=
nat_trans.rec (λ x y, x) η
theorem naturality (η : F ⟹ G) : Π⦃a b : C⦄ (f : a ⟶ b), G f ∘ η a = η b ∘ F f :=
nat_trans.rec (λ x y, y) η
attribute natural_map [coercion]
protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
nat_trans.mk
@ -84,10 +83,10 @@ namespace nat_trans
begin
apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char),
apply is_trunc_sigma,
apply is_trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)),
apply is_trunc_pi, intro a, exact (@homH (Precategory.carrier D) _ (F a) (G a)),
intro η, apply is_trunc_pi, intro a,
apply is_trunc_pi, intro b, apply is_trunc_pi, intro f,
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (objects D) _ (F a) (G b)),
apply is_trunc_eq, apply is_trunc_succ, exact (@homH (Precategory.carrier D) _ (F a) (G b)),
end
end nat_trans

View file

@ -7,22 +7,23 @@ Author: Floris van Doorn
-/
--note: modify definition in category.set
import .constructions .morphism
import algebra.category.constructions .morphism
open eq precategory functor is_trunc equiv is_equiv pi
open is_trunc.trunctype funext precategory.ops prod.ops
open category eq category.ops functor prod.ops is_trunc
set_option pp.beta true
namespace yoneda
set_option class.conservative false
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : a5 ⟶ a6) (f2 : a4 ⟶ a5) (f3 : a3 ⟶ a4) (f4 : a2 ⟶ a3) (f5 : a1 ⟶ a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
--TODO: why does this take so much steps? (giving more information than "assoc" hardly helps)
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
(f1 ∘ f2) ∘ f3 ∘ f4 ∘ f5 = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 : assoc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc
... = _ : assoc
--disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop
definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
@ -37,7 +38,7 @@ namespace yoneda
end yoneda
open is_equiv equiv
namespace functor
open prod nat_trans

View file

@ -7,7 +7,8 @@ Author: Jakob von Raumer
Ported from Coq HoTT
-/
exit
-- This file is nowhere used. Do we want to keep it?
open eq function funext
namespace is_equiv

View file

@ -1,31 +0,0 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad, Jakob von Raumer
-- Ported from Coq HoTT
prelude
import ..path ..equiv
open eq
-- Funext
-- ------
-- Define function extensionality as a type class
-- structure funext [class] : Type :=
-- (elim : Π (A : Type) (P : A → Type ) (f g : Π x, P x), is_equiv (@apD10 A P f g))
-- set_option pp.universes true
-- check @funext.mk
-- check @funext.elim
exit
namespace funext
attribute elim [instance]
definition eq_of_homotopy [F : funext] {A : Type} {P : A → Type} {f g : Π x, P x} : f g → f = g :=
is_equiv.inv (@apD10 A P f g)
definition eq_of_homotopy2 [F : funext] {A B : Type} {P : A → B → Type}
(f g : Πx y, P x y) : (Πx y, f x y = g x y) → f = g :=
λ E, eq_of_homotopy (λx, eq_of_homotopy (E x))
end funext

View file

@ -1,10 +1,16 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.axioms.funext_of_ua
Author: Jakob von Raumer
Ported from Coq HoTT
-/
prelude
import ..equiv ..datatypes ..types.prod
import .funext_varieties .ua .funext
import .funext_varieties .ua
open eq function prod is_trunc sigma equiv is_equiv unit

View file

@ -1,9 +1,15 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jakob von Raumer
-- Ported from Coq HoTT
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.axioms.funext_varieties
Authors: Jakob von Raumer
Ported from Coq HoTT
-/
prelude
import ..path ..trunc ..equiv .funext
import ..path ..trunc ..equiv
open eq is_trunc sigma function
@ -46,7 +52,7 @@ definition weak_funext_of_naive_funext : naive_funext → weak_funext :=
context
universes l k
parameters (wf : weak_funext.{l k}) {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
parameters [wf : weak_funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
definition is_contr_sigma_homotopy [instance] : is_contr (Σ (g : Π x, B x), f g) :=
is_contr.mk (sigma.mk f (homotopy.refl f))

View file

@ -1,7 +1,13 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.axioms.ua
Author: Jakob von Raumer
Ported from Coq HoTT
-/
prelude
import ..path ..equiv
open eq equiv is_equiv

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.bool
Author: Leonardo de Moura
-/
prelude
import init.datatypes init.reserved_notation

View file

@ -7,6 +7,7 @@ Authors: Leonardo de Moura, Jakob von Raumer
Basic datatypes
-/
prelude
notation [parsing-only] `Type'` := Type.{_+1}
notation [parsing-only] `Type₊` := Type.{_+1}

View file

@ -5,10 +5,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.default
Authors: Leonardo de Moura, Jakob von Raumer
-/
prelude
import init.datatypes init.reserved_notation init.tactic init.logic
import init.bool init.num init.priority init.relation init.wf
import init.types.sigma init.types.prod init.types.empty
import init.trunc init.path init.equiv init.util
import init.axioms.ua init.axioms.funext init.axioms.funext_of_ua
import init.axioms.ua init.axioms.funext_of_ua
import init.hedberg init.nat

View file

@ -218,37 +218,45 @@ end is_equiv
open is_equiv
namespace equiv
namespace ops
attribute to_fun [coercion]
end ops
open equiv.ops
attribute to_is_equiv [instance]
infix `≃`:25 := equiv
context
parameters {A B C : Type} (eqf : A ≃ B)
variables {A B C : Type}
private definition f : A → B := to_fun eqf
private definition Hf [instance] : is_equiv f := to_is_equiv eqf
protected definition MK (f : A → B) (g : B → A) (retr : f ∘ g id) (sect : g ∘ f id) : A ≃ B :=
equiv.mk f (adjointify f g retr sect)
definition to_inv (f : A ≃ B) : B → A :=
f⁻¹
protected definition refl : A ≃ A := equiv.mk id is_equiv.is_equiv_id
protected definition refl : A ≃ A :=
equiv.mk id !is_equiv_id
definition trans (eqg: B ≃ C) : A ≃ C :=
equiv.mk ((to_fun eqg) ∘ f)
(is_equiv_compose f (to_fun eqg))
protected definition symm (f : A ≃ B) : B ≃ A :=
equiv.mk (f⁻¹) !is_equiv_inv
definition equiv_of_eq_of_equiv (f' : A → B) (Heq : to_fun eqf = f') : A ≃ B :=
equiv.mk f' (is_equiv.is_equiv_eq_closed f Heq)
protected definition trans (f : A ≃ B) (g: B ≃ C) : A ≃ C :=
equiv.mk (g ∘ f) !is_equiv_compose
definition symm : B ≃ A :=
equiv.mk (is_equiv.inv f) !is_equiv.is_equiv_inv
definition equiv_of_eq_of_equiv (f : A ≃ B) (f' : A → B) (Heq : f = f') : A ≃ B :=
equiv.mk f' (is_equiv_eq_closed f Heq)
definition equiv_ap (P : A → Type) {x y : A} {p : x = y} : (P x) ≃ (P y) :=
equiv.mk (eq.transport P p) (is_equiv_tr P p)
definition eq_equiv_fn_eq (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
end
definition eq_equiv_fn_eq_of_equiv (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
equiv.mk (ap f) !is_equiv_ap
definition equiv_ap (P : A → Type) {a b : A} (p : a = b) : (P a) ≃ (P b) :=
equiv.mk (transport P p) !is_equiv_tr
--we need this theorem for the funext_of_ua proof
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
eq.rec_on p idp
eq.rec_on p idp
-- calc enviroment
-- Note: Calculating with substitutions needs univalence

View file

@ -7,6 +7,7 @@ Author: Leonardo de Moura
General operations on functions.
-/
prelude
import init.reserved_notation

View file

@ -6,6 +6,7 @@ Author: Leonardo de Moura
Hedberg's Theorem: every type with decidable equality is a hset
-/
prelude
import init.trunc
open eq eq.ops nat is_trunc sigma

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.logic
Authors: Leonardo de Moura
-/
prelude
import init.datatypes init.reserved_notation

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module init.num
Authors: Leonardo de Moura
-/
prelude
import init.logic init.bool
open bool

View file

@ -3,7 +3,7 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: init.path
Author: Jeremy Avigad, Jakob von Raumer
Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
Ported from Coq HoTT
-/
@ -549,10 +549,10 @@ namespace eq
-- Unwhiskering, a.k.a. cancelling
definition cancel_left {x y z : A} (p : x = y) (q r : y = z) : (p ⬝ q = p ⬝ r) → (q = r) :=
eq.rec_on p (take r, eq.rec_on r (take q a, (idp_con q)⁻¹ ⬝ a)) r q
eq.rec_on p (λq r s, !idp_con⁻¹ ⬝ s ⬝ !idp_con) q r
definition cancel_right {x y z : A} (p q : x = y) (r : y = z) : (p ⬝ r = q ⬝ r) → (p = q) :=
eq.rec_on r (eq.rec_on p (take q a, a ⬝ con_idp q)) q
eq.rec_on r (λs, !con_idp⁻¹ ⬝ s ⬝ !con_idp)
-- Whiskering and identity paths.
@ -580,7 +580,6 @@ namespace eq
idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) :=
eq.rec_on h idp
-- TODO: note, 4 inductions
-- The interchange law for concatenation.
definition con2_con_con2 {p p' p'' : x = y} {q q' q'' : y = z}
(a : p = p') (b : p' = p'') (c : q = q') (d : q' = q'') :

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.priority
Authors: Leonardo de Moura
-/
prelude
import init.datatypes
definition std.priority.default : num := 1000

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.relation
Authors: Leonardo de Moura
-/
prelude
import init.logic

View file

@ -7,6 +7,7 @@ Authors: Leonardo de Moura
Basic datatypes
-/
prelude
import init.datatypes

View file

@ -10,6 +10,7 @@ expression. We should view 'tactic' as automation that when execute
produces a term. tactic.builtin is just a "dummy" for creating the
definitions that are actually implemented in C++
-/
prelude
import init.datatypes init.reserved_notation

View file

@ -196,7 +196,7 @@ namespace is_trunc
notation n `-Type` := trunctype n
abbreviation hprop := -1-Type
abbreviation hset := (-1.+1)-Type
abbreviation hset := 0-Type
protected definition hprop.mk := @trunctype.mk -1
protected definition hset.mk := @trunctype.mk (-1.+1)

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.types.prod
Author: Leonardo de Moura, Jeremy Avigad
-/
prelude
import ..wf ..num

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.types.sigma
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.num

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.types.sum
Author: Leonardo de Moura, Jeremy Avigad
-/
prelude
import init.datatypes init.reserved_notation

View file

@ -7,6 +7,7 @@ Author: Leonardo de Moura
Auxiliary definitions used by automation
-/
prelude
import init.trunc

View file

@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: init.wf
Author: Leonardo de Moura
-/
prelude
import init.relation init.tactic

View file

@ -1,11 +0,0 @@
exit
--javra: Maybe this should go somewhere else
open eq
inductive tdecidable [class] (A : Type) : Type :=
inl : A → tdecidable A,
inr : ¬A → tdecidable A
structure decidable_paths [class] (A : Type) :=
(elim : ∀(x y : A), tdecidable (x = y))

View file

@ -1,6 +1,10 @@
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Jakob von Raumer
/-
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: truncation
Authors: Jakob von Raumer
-/
open is_trunc

View file

@ -1,6 +1,8 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.W
Author: Floris van Doorn
Theorems about W-types (well-founded trees)

View file

@ -1,9 +1,11 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Module: types.path
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about path types (identity types)
-/
@ -133,11 +135,18 @@ namespace path
equiv.trans (equiv_concat_l p a3) (equiv_concat_r q a2)
/- BELOW STILL NEEDS TO BE PORTED FROM COQ HOTT -/
-- definition isequiv_whiskerL [instance] (p : a1 = a2) (q r : a2 = a3)
-- : is_equiv (@whisker_left A a1 a2 a3 p q r) :=
-- begin
-- set_option pp.beta true
-- check @cancel_left
-- set_option pp.full_names true
-- definition isequiv_whiskerL [instance] (p : a1 = a2) (q r : a2 = a3)
-- : is_equiv (@whisker_left A a1 a2 a3 p q r) :=
-- begin
-- fapply adjointify,
-- intro H, apply (!cancel_left H),
-- intro s, esimp {function.compose, function.id}, unfold eq.cancel_left,
-- -- reverts (q,r,a), apply (eq.rec_on p), esimp {whisker_left,concat2, idp, cancel_left, eq.rec_on}, intros, esimp,
-- end
-- check @whisker_right_con_whisker_left
-- end
-- /-begin
-- refine (isequiv_adjointify _ _ _ _).

View file

@ -1,11 +1,14 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Module: types.pi
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
import types.sigma
open eq equiv is_equiv funext

View file

@ -1,9 +1,11 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Module: types.prod
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about products
-/

View file

@ -1,11 +1,14 @@
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Module: types.sigma
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about sigma-types (dependent sums)
-/
import types.prod
open eq sigma sigma.ops equiv is_equiv

View file

@ -29,17 +29,16 @@ namespace is_trunc
definition is_trunc.pi_char (n : trunc_index) (A : Type) :
(Π (x y : A), is_trunc n (x = y)) ≃ (is_trunc (n .+1) A) :=
begin
fapply equiv.mk,
fapply equiv.MK,
{intro H, apply is_trunc_succ_intro},
{fapply is_equiv.adjointify,
{intros (H, x, y), apply is_trunc_eq},
{intro H, apply (is_trunc.rec_on H), intro Hint, apply idp},
{intro P,
unfold compose, apply eq_of_homotopy,
exact sorry}},
{intros (H, x, y), apply is_trunc_eq},
{intro H, apply (is_trunc.rec_on H), intro Hint, apply idp},
{intro P, apply eq_of_homotopy, intro a, apply eq_of_homotopy, intro b,
esimp {function.id,compose,is_trunc_succ_intro,is_trunc_eq},
generalize (P a b), intro H, apply (is_trunc.rec_on H), intro H', apply idp},
end
definition is_hprop_is_trunc {n : trunc_index} :
definition is_hprop_is_trunc [instance] (n : trunc_index) :
Π (A : Type), is_hprop (is_trunc n A) :=
begin
apply (trunc_index.rec_on n),
@ -84,7 +83,7 @@ namespace is_trunc
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apD,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (symm !heq_pi) H2,
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_paths_r
@ -117,4 +116,25 @@ namespace is_trunc
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K))
open trunctype equiv equiv.ops
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
/--/ intro A, exact (⟨trunctype_type A, is_trunc_trunctype_type A⟩),
/--/ intro S, exact (trunctype.mk S.1 S.2),
/--/ intro S, apply (sigma.rec_on S), intros (S1, S2), apply idp,
intro A, apply (trunctype.rec_on A), intros (A1, A2), apply idp,
end
-- set_option pp.notation false
protected definition trunctype.eq (n : trunc_index) (A B : n-Type) :
(A = B) ≃ (trunctype_type A = trunctype_type B) :=
calc
(A = B) ≃ (trunctype.sigma_char n A = trunctype.sigma_char n B) : eq_equiv_fn_eq_of_equiv
... ≃ ((trunctype.sigma_char n A).1 = (trunctype.sigma_char n B).1) : equiv.symm (!equiv_subtype)
... ≃ (trunctype_type A = trunctype_type B) : equiv.refl
end is_trunc