lean2/hott/algebra/precategory/basic.hlean
Floris van Doorn f513538631 feat(hott): more cleanup of HoTT library
remove funext class,
remove a couple of sorry's,
add characterization of equality in trunctypes,
use Jeremy's format for headers everywhere in the HoTT library,
continue working on Yoneda embedding
2015-02-26 13:19:54 -05:00

88 lines
3 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.basic
Authors: Floris van Doorn
-/
open eq is_trunc
namespace category
structure precategory [class] (ob : Type) : Type :=
(hom : ob → ob → Type)
(homH : Π(a b : ob), is_hset (hom a b))
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
(ID : Π (a : ob), hom a a)
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
comp h (comp g f) = comp (comp h g) f)
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
attribute precategory [multiple-instances]
attribute precategory.homH [instance]
infixr `∘` := precategory.comp
-- input ⟶ using \--> (this is a different arrow than \-> (→))
infixl [parsing-only] `⟶`:25 := precategory.hom
namespace hom
infixl `⟶` := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b
end hom
abbreviation hom := @precategory.hom
abbreviation homH := @precategory.homH
abbreviation comp := @precategory.comp
abbreviation ID := @precategory.ID
abbreviation assoc := @precategory.assoc
abbreviation id_left := @precategory.id_left
abbreviation id_right := @precategory.id_right
section basic_lemmas
variables {ob : Type} [C : precategory ob]
variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a}
include C
definition id [reducible] := ID a
definition id_compose (a : ob) : ID a ∘ ID a = ID a := !id_left
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
calc i = i ∘ id : id_right
... = id : H
definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
calc i = id ∘ i : id_left
... = id : H
definition homset [reducible] (x y : ob) : hset :=
hset.mk (hom x y) _
definition is_hprop_eq_hom [instance] : is_hprop (f = f') :=
!is_trunc_eq
end basic_lemmas
structure Precategory : Type :=
(carrier : Type)
(struct : precategory carrier)
definition precategory.Mk [reducible] {ob} (C) : Precategory := Precategory.mk ob C
definition precategory.MK [reducible] (a b c d e f g h) : Precategory :=
Precategory.mk a (precategory.mk b c d e f g h)
abbreviation carrier := @Precategory.carrier
attribute Precategory.carrier [coercion]
attribute Precategory.struct [instance] [priority 10000] [coercion]
-- definition precategory.carrier [coercion] [reducible] := Precategory.carrier
-- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct
notation g `∘⁅` C `⁆` f := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f
-- TODO: make this left associative
-- TODO: change this notation?
definition Precategory.eta (C : Precategory) : Precategory.mk C C = C :=
Precategory.rec (λob c, idp) C
end category
open category