2013-12-16 17:38:57 +00:00
|
|
|
|
Set: pp::colors
|
|
|
|
|
Set: pp::unicode
|
2014-01-01 21:52:25 +00:00
|
|
|
|
Imported 'Int'
|
2013-12-16 17:38:57 +00:00
|
|
|
|
Assumed: a
|
|
|
|
|
Assumed: P
|
|
|
|
|
Assumed: f
|
|
|
|
|
Assumed: g
|
|
|
|
|
Assumed: H1
|
|
|
|
|
Assumed: H2
|
|
|
|
|
Assumed: H3
|
|
|
|
|
Proved: T1
|
|
|
|
|
Proved: T2
|
|
|
|
|
Proved: T3
|
|
|
|
|
Proved: T4
|
|
|
|
|
Proved: T5
|
|
|
|
|
Proved: T6
|
|
|
|
|
Proved: T7
|
|
|
|
|
Proved: T8
|
2014-01-09 16:33:52 +00:00
|
|
|
|
theorem T1 : ∃ x y : ℤ, P (f y x) (f y x) := exists_intro (g a) (exists_intro a H1)
|
|
|
|
|
theorem T2 : ∃ x : ℤ, P (f x (g x)) (f x (g x)) := exists_intro a H1
|
|
|
|
|
theorem T3 : ∃ x : ℤ, P (f x x) (f x x) := exists_intro (g a) H2
|
|
|
|
|
theorem T4 : ∃ x : ℤ, P (f (g a) x) (f x x) := exists_intro (g a) H2
|
|
|
|
|
theorem T5 : ∃ x : ℤ, P x x := exists_intro (f (g a) (g a)) H2
|
|
|
|
|
theorem T6 : ∃ x y : ℤ, P x y := exists_intro (f (g a) (g a)) (exists_intro (g a) H3)
|
|
|
|
|
theorem T7 : ∃ x : ℤ, P (f x x) x := exists_intro (g a) H3
|
|
|
|
|
theorem T8 : ∃ x y : ℤ, P (f x x) y := exists_intro (g a) (exists_intro (g a) H3)
|