2014-01-01 21:52:25 +00:00
|
|
|
Import Int.
|
2013-12-19 01:40:21 +00:00
|
|
|
|
|
|
|
Scope
|
|
|
|
Variable A : Type
|
|
|
|
Variable B : Type
|
|
|
|
Variable f : A -> A -> A
|
|
|
|
Definition g (x y : A) : A := f y x
|
|
|
|
Variable h : A -> B
|
|
|
|
Variable hinv : B -> A
|
|
|
|
Axiom Inv (x : A) : hinv (h x) = x
|
|
|
|
Axiom H1 (x y : A) : f x y = f y x
|
|
|
|
Theorem f_eq_g : f = g := Abst (fun x, (Abst (fun y,
|
|
|
|
let L1 : f x y = f y x := H1 x y,
|
|
|
|
L2 : f y x = g x y := Refl (g x y)
|
|
|
|
in Trans L1 L2)))
|
|
|
|
|
|
|
|
Theorem Inj (x y : A) (H : h x = h y) : x = y :=
|
|
|
|
let L1 : hinv (h x) = hinv (h y) := Congr2 hinv H,
|
|
|
|
L2 : hinv (h x) = x := Inv x,
|
|
|
|
L3 : hinv (h y) = y := Inv y,
|
|
|
|
L4 : x = hinv (h x) := Symm L2,
|
|
|
|
L5 : x = hinv (h y) := Trans L4 L1
|
|
|
|
in Trans L5 L3.
|
|
|
|
EndScope
|
|
|
|
|
|
|
|
Show Environment 3.
|
|
|
|
Eval g Int Int::sub 10 20
|