2014-12-05 22:03:24 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
Module: int.basic
|
|
|
|
|
Authors: Floris van Doorn, Jeremy Avigad
|
2014-08-23 00:56:25 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
The integers, with addition, multiplication, and subtraction. The representation of the integers is
|
2014-12-26 21:25:05 +00:00
|
|
|
|
chosen to compute efficiently.
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
To faciliate proving things about these operations, we show that the integers are a quotient of
|
2014-12-26 21:25:05 +00:00
|
|
|
|
ℕ × ℕ with the usual equivalence relation, ≡, and functions
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
abstr : ℕ × ℕ → ℤ
|
|
|
|
|
repr : ℤ → ℕ × ℕ
|
|
|
|
|
|
2014-12-26 21:25:05 +00:00
|
|
|
|
satisfying:
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
abstr_repr (a : ℤ) : abstr (repr a) = a
|
|
|
|
|
repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p
|
|
|
|
|
abstr_eq (p q : ℕ × ℕ) : p ≡ q → abstr p = abstr q
|
|
|
|
|
|
|
|
|
|
For example, to "lift" statements about add to statements about padd, we need to prove the
|
|
|
|
|
following:
|
|
|
|
|
|
|
|
|
|
repr_add (a b : ℤ) : repr (a + b) = padd (repr a) (repr b)
|
|
|
|
|
padd_congr (p p' q q' : ℕ × ℕ) (H1 : p ≡ p') (H2 : q ≡ q') : padd p q ≡ p' q'
|
2014-12-26 21:25:05 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
-/
|
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
import data.nat.basic data.nat.order data.nat.sub data.prod
|
|
|
|
|
import algebra.relation algebra.binary algebra.ordered_ring
|
2014-08-20 02:32:44 +00:00
|
|
|
|
import tools.fake_simplifier
|
2014-10-02 00:51:17 +00:00
|
|
|
|
open eq.ops
|
2014-12-17 18:32:38 +00:00
|
|
|
|
open prod relation nat
|
|
|
|
|
open decidable binary fake_simplifier
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- the type of integers -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
inductive int : Type :=
|
|
|
|
|
of_nat : nat → int,
|
|
|
|
|
neg_succ_of_nat : nat → int
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
notation `ℤ` := int
|
|
|
|
|
coercion [persistent] int.of_nat
|
|
|
|
|
definition int.of_num [coercion] (n : num) : ℤ := int.of_nat (nat.of_num n)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
namespace int
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
/- definitions of basic functions -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition neg_of_nat (m : ℕ) : ℤ :=
|
|
|
|
|
nat.cases_on m 0 (take m', neg_succ_of_nat m')
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition sub_nat_nat (m n : ℕ) : ℤ :=
|
|
|
|
|
nat.cases_on (n - m)
|
2014-12-26 21:25:05 +00:00
|
|
|
|
(of_nat (m - n)) -- m ≥ n
|
|
|
|
|
(take k, neg_succ_of_nat k) -- m < n, and n - m = succ k
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition neg (a : ℤ) : ℤ :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m, -- a = of_nat m
|
|
|
|
|
nat.cases_on m 0 (take m', neg_succ_of_nat m'))
|
|
|
|
|
(take m, of_nat (succ m)) -- a = neg_succ_of_nat m
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition add (a b : ℤ) : ℤ :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m, -- a = of_nat m
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n, of_nat (m + n)) -- b = of_nat n
|
2014-12-17 18:32:38 +00:00
|
|
|
|
(take n, sub_nat_nat m (succ n))) -- b = neg_succ_of_nat n
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take m, -- a = neg_succ_of_nat m
|
|
|
|
|
cases_on b
|
2014-12-17 18:32:38 +00:00
|
|
|
|
(take n, sub_nat_nat n (succ m)) -- b = of_nat n
|
|
|
|
|
(take n, neg_of_nat (succ m + succ n))) -- b = neg_succ_of_nat n
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition mul (a b : ℤ) : ℤ :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m, -- a = of_nat m
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n, of_nat (m * n)) -- b = of_nat n
|
|
|
|
|
(take n, neg_of_nat (m * succ n))) -- b = neg_succ_of_nat n
|
|
|
|
|
(take m, -- a = neg_succ_of_nat m
|
|
|
|
|
cases_on b
|
2014-12-17 18:32:38 +00:00
|
|
|
|
(take n, neg_of_nat (succ m * n)) -- b = of_nat n
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take n, of_nat (succ m * succ n))) -- b = neg_succ_of_nat n
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- notation -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
notation `-[` n `+1]` := int.neg_succ_of_nat n -- for pretty-printing output
|
|
|
|
|
prefix - := int.neg
|
|
|
|
|
infix + := int.add
|
|
|
|
|
infix * := int.mul
|
2014-08-22 00:54:50 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- some basic functions and properties -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem of_nat_inj {m n : ℕ} (H : of_nat m = of_nat n) : m = n :=
|
|
|
|
|
no_confusion H (λe, e)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem neg_succ_of_nat_inj {m n : ℕ} (H : neg_succ_of_nat m = neg_succ_of_nat n) : m = n :=
|
|
|
|
|
no_confusion H (λe, e)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition has_decidable_eq [instance] : decidable_eq ℤ :=
|
|
|
|
|
take a b,
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m,
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n,
|
|
|
|
|
if H : m = n then inl (congr_arg of_nat H) else inr (take H1, H (of_nat_inj H1)))
|
|
|
|
|
(take n', inr (assume H, no_confusion H)))
|
|
|
|
|
(take m',
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n, inr (assume H, no_confusion H))
|
|
|
|
|
(take n',
|
|
|
|
|
(if H : m' = n' then inl (congr_arg neg_succ_of_nat H) else
|
|
|
|
|
inr (take H1, H (neg_succ_of_nat_inj H1)))))
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := rfl
|
|
|
|
|
|
|
|
|
|
theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := rfl
|
|
|
|
|
|
|
|
|
|
theorem mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := rfl
|
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem sub_nat_nat_of_ge {m n : ℕ} (H : m ≥ n) : sub_nat_nat m n = of_nat (m - n) :=
|
|
|
|
|
have H1 : n - m = 0, from le_imp_sub_eq_zero H,
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
2014-12-05 22:03:24 +00:00
|
|
|
|
sub_nat_nat m n = nat.cases_on 0 (of_nat (m - n)) _ : H1 ▸ rfl
|
|
|
|
|
... = of_nat (m - n) : rfl
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem sub_nat_nat_of_lt {m n : ℕ} (H : m < n) :
|
|
|
|
|
sub_nat_nat m n = neg_succ_of_nat (pred (n - m)) :=
|
|
|
|
|
have H1 : n - m = succ (pred (n - m)), from (succ_pred_of_pos (sub_pos_of_gt H))⁻¹,
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
2014-12-05 22:03:24 +00:00
|
|
|
|
sub_nat_nat m n = nat.cases_on (succ (pred (n - m))) (of_nat (m - n))
|
|
|
|
|
(take k, neg_succ_of_nat k) : H1 ▸ rfl
|
|
|
|
|
... = neg_succ_of_nat (pred (n - m)) : rfl
|
|
|
|
|
|
|
|
|
|
definition nat_abs (a : ℤ) : ℕ := cases_on a (take n, n) (take n', succ n')
|
|
|
|
|
|
|
|
|
|
theorem nat_abs_of_nat (n : ℕ) : nat_abs (of_nat n) = n := rfl
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem nat_abs_eq_zero {a : ℤ} : nat_abs a = 0 → a = 0 :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m, assume H : nat_abs (of_nat m) = 0, congr_arg of_nat H)
|
|
|
|
|
(take m', assume H : nat_abs (neg_succ_of_nat m') = 0, absurd H (succ_ne_zero _))
|
|
|
|
|
|
2014-12-26 21:25:05 +00:00
|
|
|
|
/- int is a quotient of ordered pairs of natural numbers -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition equiv (p q : ℕ × ℕ) : Prop := pr1 p + pr2 q = pr2 p + pr1 q
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
notation [local] p `≡` q := equiv p q
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv.refl {p : ℕ × ℕ} : p ≡ p := !add.comm
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv.symm {p q : ℕ × ℕ} (H : p ≡ q) : q ≡ p :=
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
2014-12-05 22:03:24 +00:00
|
|
|
|
pr1 q + pr2 p = pr2 p + pr1 q : !add.comm
|
|
|
|
|
... = pr1 p + pr2 q : H⁻¹
|
|
|
|
|
... = pr2 q + pr1 p : !add.comm
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv.trans {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
|
|
|
|
calc
|
|
|
|
|
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by simp
|
|
|
|
|
... = pr2 p + pr1 q + pr2 r : {H1}
|
|
|
|
|
... = pr2 p + (pr1 q + pr2 r) : by simp
|
|
|
|
|
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
|
|
|
|
... = pr2 p + pr1 r + pr2 q : by simp,
|
|
|
|
|
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem equiv_equiv : is_equivalence equiv :=
|
2014-12-17 18:32:38 +00:00
|
|
|
|
is_equivalence.mk @equiv.refl @equiv.symm @equiv.trans
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem equiv_cases {p q : ℕ × ℕ} (H : equiv p q) :
|
|
|
|
|
(pr1 p ≥ pr2 p ∧ pr1 q ≥ pr2 q) ∨ (pr1 p < pr2 p ∧ pr1 q < pr2 q) :=
|
|
|
|
|
or.elim (@le_or_gt (pr2 p) (pr1 p))
|
|
|
|
|
(assume H1: pr1 p ≥ pr2 p,
|
2015-01-07 01:44:04 +00:00
|
|
|
|
have H2 : pr2 p + pr1 q ≥ pr2 p + pr2 q, from H ▸ add_le_add_right H1 (pr2 q),
|
|
|
|
|
or.inl (and.intro H1 (le_of_add_le_add_left H2)))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(assume H1: pr1 p < pr2 p,
|
2015-01-07 01:44:04 +00:00
|
|
|
|
have H2 : pr2 p + pr1 q < pr2 p + pr2 q, from H ▸ add_lt_add_right H1 (pr2 q),
|
|
|
|
|
or.inr (and.intro H1 (lt_of_add_lt_add_left H2)))
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv_of_eq {p q : ℕ × ℕ} (H : p = q) : p ≡ q := H ▸ equiv.refl
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv_of_eq_of_equiv {p q r : ℕ × ℕ} (H1 : p = q) (H2 : q ≡ r) : p ≡ r := H1⁻¹ ▸ H2
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem equiv_of_equiv_of_eq {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q = r) : p ≡ r := H2 ▸ H1
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
calc_trans equiv.trans
|
|
|
|
|
calc_refl equiv.refl
|
|
|
|
|
calc_symm equiv.symm
|
|
|
|
|
calc_trans equiv_of_eq_of_equiv
|
|
|
|
|
calc_trans equiv_of_equiv_of_eq
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- the representation and abstraction functions -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
definition abstr (a : ℕ × ℕ) : ℤ := sub_nat_nat (pr1 a) (pr2 a)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem abstr_of_ge {p : ℕ × ℕ} (H : pr1 p ≥ pr2 p) : abstr p = of_nat (pr1 p - pr2 p) :=
|
|
|
|
|
sub_nat_nat_of_ge H
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem abstr_of_lt {p : ℕ × ℕ} (H : pr1 p < pr2 p) :
|
|
|
|
|
abstr p = neg_succ_of_nat (pred (pr2 p - pr1 p)) :=
|
|
|
|
|
sub_nat_nat_of_lt H
|
|
|
|
|
|
|
|
|
|
definition repr (a : ℤ) : ℕ × ℕ := cases_on a (take m, (m, 0)) (take m, (0, succ m))
|
|
|
|
|
|
|
|
|
|
theorem abstr_repr (a : ℤ) : abstr (repr a) = a :=
|
|
|
|
|
cases_on a (take m, (sub_nat_nat_of_ge (zero_le m))) (take m, rfl)
|
|
|
|
|
|
|
|
|
|
theorem repr_sub_nat_nat (m n : ℕ) : repr (sub_nat_nat m n) ≡ (m, n) :=
|
|
|
|
|
or.elim (@le_or_gt n m)
|
|
|
|
|
(take H : m ≥ n,
|
|
|
|
|
have H1 : repr (sub_nat_nat m n) = (m - n, 0), from sub_nat_nat_of_ge H ▸ rfl,
|
|
|
|
|
H1⁻¹ ▸
|
2014-08-20 02:32:44 +00:00
|
|
|
|
(calc
|
2014-12-05 22:03:24 +00:00
|
|
|
|
m - n + n = m : add_sub_ge_left H
|
2014-12-24 02:14:19 +00:00
|
|
|
|
... = 0 + m : zero_add))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take H : m < n,
|
|
|
|
|
have H1 : repr (sub_nat_nat m n) = (0, succ (pred (n - m))), from sub_nat_nat_of_lt H ▸ rfl,
|
|
|
|
|
H1⁻¹ ▸
|
2014-08-20 02:32:44 +00:00
|
|
|
|
(calc
|
2014-12-24 02:14:19 +00:00
|
|
|
|
0 + n = n : zero_add
|
2015-01-08 02:26:51 +00:00
|
|
|
|
... = n - m + m : add_sub_ge_left (le_of_lt H)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = succ (pred (n - m)) + m : (succ_pred_of_pos (sub_pos_of_gt H))⁻¹))
|
|
|
|
|
|
|
|
|
|
theorem repr_abstr (p : ℕ × ℕ) : repr (abstr p) ≡ p :=
|
|
|
|
|
!prod.eta ▸ !repr_sub_nat_nat
|
|
|
|
|
|
|
|
|
|
theorem abstr_eq {p q : ℕ × ℕ} (Hequiv : p ≡ q) : abstr p = abstr q :=
|
|
|
|
|
or.elim (equiv_cases Hequiv)
|
|
|
|
|
(assume H2,
|
|
|
|
|
have H3 : pr1 p ≥ pr2 p, from and.elim_left H2,
|
|
|
|
|
have H4 : pr1 q ≥ pr2 q, from and.elim_right H2,
|
|
|
|
|
have H5 : pr1 p = pr1 q - pr2 q + pr2 p, from
|
|
|
|
|
calc
|
|
|
|
|
pr1 p = pr1 p + pr2 q - pr2 q : sub_add_left
|
|
|
|
|
... = pr2 p + pr1 q - pr2 q : Hequiv
|
|
|
|
|
... = pr2 p + (pr1 q - pr2 q) : add_sub_assoc H4
|
|
|
|
|
... = pr1 q - pr2 q + pr2 p : add.comm,
|
|
|
|
|
have H6 : pr1 p - pr2 p = pr1 q - pr2 q, from
|
|
|
|
|
calc
|
|
|
|
|
pr1 p - pr2 p = pr1 q - pr2 q + pr2 p - pr2 p : H5
|
|
|
|
|
... = pr1 q - pr2 q : sub_add_left,
|
|
|
|
|
abstr_of_ge H3 ⬝ congr_arg of_nat H6 ⬝ (abstr_of_ge H4)⁻¹)
|
|
|
|
|
(assume H2,
|
|
|
|
|
have H3 : pr1 p < pr2 p, from and.elim_left H2,
|
|
|
|
|
have H4 : pr1 q < pr2 q, from and.elim_right H2,
|
|
|
|
|
have H5 : pr2 p = pr2 q - pr1 q + pr1 p, from
|
|
|
|
|
calc
|
|
|
|
|
pr2 p = pr2 p + pr1 q - pr1 q : sub_add_left
|
|
|
|
|
... = pr1 p + pr2 q - pr1 q : Hequiv
|
2015-01-08 02:26:51 +00:00
|
|
|
|
... = pr1 p + (pr2 q - pr1 q) : add_sub_assoc (le_of_lt H4)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = pr2 q - pr1 q + pr1 p : add.comm,
|
|
|
|
|
have H6 : pr2 p - pr1 p = pr2 q - pr1 q, from
|
|
|
|
|
calc
|
|
|
|
|
pr2 p - pr1 p = pr2 q - pr1 q + pr1 p - pr1 p : H5
|
|
|
|
|
... = pr2 q - pr1 q : sub_add_left,
|
|
|
|
|
abstr_of_lt H3 ⬝ congr_arg neg_succ_of_nat (congr_arg pred H6)⬝ (abstr_of_lt H4)⁻¹)
|
|
|
|
|
|
|
|
|
|
theorem equiv_iff (p q : ℕ × ℕ) : (p ≡ q) ↔ ((p ≡ p) ∧ (q ≡ q) ∧ (abstr p = abstr q)) :=
|
|
|
|
|
iff.intro
|
|
|
|
|
(assume H : equiv p q,
|
2014-12-17 18:32:38 +00:00
|
|
|
|
and.intro !equiv.refl (and.intro !equiv.refl (abstr_eq H)))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(assume H : equiv p p ∧ equiv q q ∧ abstr p = abstr q,
|
|
|
|
|
have H1 : abstr p = abstr q, from and.elim_right (and.elim_right H),
|
2014-12-17 18:32:38 +00:00
|
|
|
|
equiv.trans (H1 ▸ equiv.symm (repr_abstr p)) (repr_abstr q))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
theorem eq_abstr_of_equiv_repr {a : ℤ} {p : ℕ × ℕ} (Hequiv : repr a ≡ p) : a = abstr p :=
|
|
|
|
|
calc
|
|
|
|
|
a = abstr (repr a) : abstr_repr
|
|
|
|
|
... = abstr p : abstr_eq Hequiv
|
|
|
|
|
|
|
|
|
|
theorem eq_of_repr_equiv_repr {a b : ℤ} (H : repr a ≡ repr b) : a = b :=
|
|
|
|
|
calc
|
|
|
|
|
a = abstr (repr a) : abstr_repr
|
|
|
|
|
... = abstr (repr b) : abstr_eq H
|
|
|
|
|
... = b : abstr_repr
|
|
|
|
|
|
|
|
|
|
theorem nat_abs_abstr (p : ℕ × ℕ) : nat_abs (abstr p) = dist (pr1 p) (pr2 p) :=
|
|
|
|
|
let m := pr1 p, n := pr2 p in
|
|
|
|
|
or.elim (@le_or_gt n m)
|
|
|
|
|
(assume H : m ≥ n,
|
|
|
|
|
calc
|
|
|
|
|
nat_abs (abstr (m, n)) = nat_abs (of_nat (m - n)) : int.abstr_of_ge H
|
|
|
|
|
... = dist m n : dist_ge H)
|
|
|
|
|
(assume H : m < n,
|
|
|
|
|
calc
|
|
|
|
|
nat_abs (abstr (m, n)) = nat_abs (neg_succ_of_nat (pred (n - m))) : int.abstr_of_lt H
|
|
|
|
|
... = succ (pred (n - m)) : rfl
|
|
|
|
|
... = n - m : succ_pred_of_pos (sub_pos_of_gt H)
|
2015-01-08 02:26:51 +00:00
|
|
|
|
... = dist m n : dist_le (le_of_lt H))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem cases_of_nat (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat n) :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
cases_on a
|
2014-12-16 03:05:03 +00:00
|
|
|
|
(take n, or.inl (exists.intro n rfl))
|
|
|
|
|
(take n', or.inr (exists.intro (succ n') rfl))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem cases_of_nat_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) :=
|
|
|
|
|
int.cases_on a (take m, or.inl (exists.intro _ rfl)) (take m, or.inr (exists.intro _ rfl))
|
|
|
|
|
|
|
|
|
|
theorem by_cases_of_nat {P : ℤ → Prop} (a : ℤ)
|
|
|
|
|
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat n)) :
|
2014-08-22 00:54:50 +00:00
|
|
|
|
P a :=
|
2014-12-22 19:21:22 +00:00
|
|
|
|
or.elim (cases_of_nat a)
|
2014-09-05 01:41:06 +00:00
|
|
|
|
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
|
|
|
|
(assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem by_cases_of_nat_succ {P : ℤ → Prop} (a : ℤ)
|
|
|
|
|
(H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (- of_nat (succ n))) :
|
|
|
|
|
P a :=
|
|
|
|
|
or.elim (cases_of_nat_succ a)
|
|
|
|
|
(assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n)
|
|
|
|
|
(assume H, obtain (n : ℕ) (H3 : a = -(succ n)), from H, H3⁻¹ ▸ H2 n)
|
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
/-
|
2014-12-26 21:25:05 +00:00
|
|
|
|
int is a ring
|
2014-12-17 18:32:38 +00:00
|
|
|
|
-/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- addition -/
|
|
|
|
|
|
|
|
|
|
definition padd (p q : ℕ × ℕ) : ℕ × ℕ := map_pair2 nat.add p q
|
|
|
|
|
|
|
|
|
|
theorem repr_add (a b : ℤ) : repr (add a b) ≡ padd (repr a) (repr b) :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m,
|
|
|
|
|
cases_on b
|
2014-12-17 18:32:38 +00:00
|
|
|
|
(take n, !equiv.refl)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take n',
|
|
|
|
|
have H1 : equiv (repr (add (of_nat m) (neg_succ_of_nat n'))) (m, succ n'),
|
|
|
|
|
from !repr_sub_nat_nat,
|
|
|
|
|
have H2 : padd (repr (of_nat m)) (repr (neg_succ_of_nat n')) = (m, 0 + succ n'),
|
|
|
|
|
from rfl,
|
2014-12-24 02:14:19 +00:00
|
|
|
|
(!zero_add ▸ H2)⁻¹ ▸ H1))
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take m',
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n,
|
|
|
|
|
have H1 : equiv (repr (add (neg_succ_of_nat m') (of_nat n))) (n, succ m'),
|
|
|
|
|
from !repr_sub_nat_nat,
|
|
|
|
|
have H2 : padd (repr (neg_succ_of_nat m')) (repr (of_nat n)) = (0 + n, succ m'),
|
|
|
|
|
from rfl,
|
2014-12-24 02:14:19 +00:00
|
|
|
|
(!zero_add ▸ H2)⁻¹ ▸ H1)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take n',!repr_sub_nat_nat))
|
|
|
|
|
|
|
|
|
|
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
2014-12-05 22:03:24 +00:00
|
|
|
|
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : by simp
|
|
|
|
|
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
|
|
|
|
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
|
|
|
|
... = pr2 (padd p q) + pr1 (padd p' q') : by simp
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
|
|
|
|
calc
|
|
|
|
|
padd p q = (pr1 p + pr1 q, pr2 p + pr2 q) : rfl
|
|
|
|
|
... = (pr1 q + pr1 p, pr2 p + pr2 q) : add.comm
|
|
|
|
|
... = (pr1 q + pr1 p, pr2 q + pr2 p) : add.comm
|
|
|
|
|
... = padd q p : rfl
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem padd_assoc (p q r : ℕ × ℕ) : padd (padd p q) r = padd p (padd q r) :=
|
|
|
|
|
calc
|
|
|
|
|
padd (padd p q) r = (pr1 p + pr1 q + pr1 r, pr2 p + pr2 q + pr2 r) : rfl
|
|
|
|
|
... = (pr1 p + (pr1 q + pr1 r), pr2 p + pr2 q + pr2 r) : add.assoc
|
|
|
|
|
... = (pr1 p + (pr1 q + pr1 r), pr2 p + (pr2 q + pr2 r)) : add.assoc
|
|
|
|
|
... = padd p (padd q r) : rfl
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem add.comm (a b : ℤ) : a + b = b + a :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
begin
|
|
|
|
|
apply eq_of_repr_equiv_repr,
|
2014-12-17 18:32:38 +00:00
|
|
|
|
apply equiv.trans,
|
2014-12-05 22:03:24 +00:00
|
|
|
|
apply repr_add,
|
2014-12-17 18:32:38 +00:00
|
|
|
|
apply equiv.symm,
|
2014-12-05 22:03:24 +00:00
|
|
|
|
apply (eq.subst (padd_comm (repr b) (repr a))),
|
|
|
|
|
apply repr_add
|
|
|
|
|
end
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem add.assoc (a b c : ℤ) : a + b + c = a + (b + c) :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
have H1 [visible]: repr (a + b + c) ≡ padd (padd (repr a) (repr b)) (repr c), from
|
2014-12-17 18:32:38 +00:00
|
|
|
|
equiv.trans (repr_add (a + b) c) (padd_congr !repr_add !equiv.refl),
|
2014-12-05 22:03:24 +00:00
|
|
|
|
have H2 [visible]: repr (a + (b + c)) ≡ padd (repr a) (padd (repr b) (repr c)), from
|
2014-12-17 18:32:38 +00:00
|
|
|
|
equiv.trans (repr_add a (b + c)) (padd_congr !equiv.refl !repr_add),
|
2014-12-05 22:03:24 +00:00
|
|
|
|
begin
|
|
|
|
|
apply eq_of_repr_equiv_repr,
|
2014-12-17 18:32:38 +00:00
|
|
|
|
apply equiv.trans,
|
2014-12-05 22:03:24 +00:00
|
|
|
|
apply H1,
|
|
|
|
|
apply (eq.subst ((padd_assoc _ _ _)⁻¹)),
|
2014-12-17 18:32:38 +00:00
|
|
|
|
apply equiv.symm,
|
2014-12-05 22:03:24 +00:00
|
|
|
|
apply H2
|
|
|
|
|
end
|
|
|
|
|
|
2014-12-24 02:14:19 +00:00
|
|
|
|
theorem add_zero (a : ℤ) : a + 0 = a := cases_on a (take m, rfl) (take m', rfl)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-24 02:14:19 +00:00
|
|
|
|
theorem zero_add (a : ℤ) : 0 + a = a := add.comm a 0 ▸ add_zero a
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
/- negation -/
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
definition pneg (p : ℕ × ℕ) : ℕ × ℕ := (pr2 p, pr1 p)
|
|
|
|
|
|
|
|
|
|
-- note: this is =, not just ≡
|
|
|
|
|
theorem repr_neg (a : ℤ) : repr (- a) = pneg (repr a) :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m,
|
|
|
|
|
nat.cases_on m rfl (take m', rfl))
|
|
|
|
|
(take m', rfl)
|
|
|
|
|
|
|
|
|
|
theorem pneg_congr {p p' : ℕ × ℕ} (H : p ≡ p') : pneg p ≡ pneg p' := eq.symm H
|
|
|
|
|
|
|
|
|
|
theorem pneg_pneg (p : ℕ × ℕ) : pneg (pneg p) = p := !prod.eta
|
|
|
|
|
|
|
|
|
|
theorem nat_abs_neg (a : ℤ) : nat_abs (-a) = nat_abs a :=
|
|
|
|
|
calc
|
|
|
|
|
nat_abs (-a) = nat_abs (abstr (repr (-a))) : abstr_repr
|
|
|
|
|
... = nat_abs (abstr (pneg (repr a))) : repr_neg
|
|
|
|
|
... = dist (pr1 (pneg (repr a))) (pr2 (pneg (repr a))) : nat_abs_abstr
|
|
|
|
|
... = dist (pr2 (pneg (repr a))) (pr1 (pneg (repr a))) : dist_comm
|
|
|
|
|
... = nat_abs (abstr (repr a)) : nat_abs_abstr
|
|
|
|
|
... = nat_abs a : abstr_repr
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) :=
|
2014-12-17 18:32:38 +00:00
|
|
|
|
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
|
|
|
|
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, by simp
|
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem add.left_inv (a : ℤ) : -a + a = 0 :=
|
|
|
|
|
have H : repr (-a + a) ≡ repr 0, from
|
2014-12-05 22:03:24 +00:00
|
|
|
|
calc
|
2014-12-17 18:32:38 +00:00
|
|
|
|
repr (-a + a) ≡ padd (repr (neg a)) (repr a) : repr_add
|
|
|
|
|
... = padd (pneg (repr a)) (repr a) : repr_neg
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... ≡ repr 0 : padd_pneg,
|
|
|
|
|
eq_of_repr_equiv_repr H
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-26 21:25:05 +00:00
|
|
|
|
/- nat abs -/
|
2014-12-22 19:21:22 +00:00
|
|
|
|
|
|
|
|
|
definition pabs (p : ℕ × ℕ) : ℕ := dist (pr1 p) (pr2 p)
|
|
|
|
|
|
|
|
|
|
theorem pabs_congr {p q : ℕ × ℕ} (H : p ≡ q) : pabs p = pabs q :=
|
|
|
|
|
calc
|
|
|
|
|
pabs p = nat_abs (abstr p) : nat_abs_abstr
|
|
|
|
|
... = nat_abs (abstr q) : abstr_eq H
|
|
|
|
|
... = pabs q : nat_abs_abstr
|
|
|
|
|
|
|
|
|
|
theorem nat_abs_eq_pabs_repr (a : ℤ) : nat_abs a = pabs (repr a) :=
|
|
|
|
|
calc
|
|
|
|
|
nat_abs a = nat_abs (abstr (repr a)) : abstr_repr
|
|
|
|
|
... = pabs (repr a) : nat_abs_abstr
|
|
|
|
|
|
|
|
|
|
theorem nat_abs_add_le (a b : ℤ) : nat_abs (a + b) ≤ nat_abs a + nat_abs b :=
|
|
|
|
|
have H : nat_abs (a + b) = pabs (padd (repr a) (repr b)), from
|
|
|
|
|
calc
|
|
|
|
|
nat_abs (a + b) = pabs (repr (a + b)) : nat_abs_eq_pabs_repr
|
|
|
|
|
... = pabs (padd (repr a) (repr b)) : pabs_congr !repr_add,
|
|
|
|
|
have H1 : nat_abs a = pabs (repr a), from !nat_abs_eq_pabs_repr,
|
|
|
|
|
have H2 : nat_abs b = pabs (repr b), from !nat_abs_eq_pabs_repr,
|
|
|
|
|
have H3 : pabs (padd (repr a) (repr b)) ≤ pabs (repr a) + pabs (repr b), from !dist_add_le_add_dist,
|
|
|
|
|
H⁻¹ ▸ H1⁻¹ ▸ H2⁻¹ ▸ H3
|
|
|
|
|
|
|
|
|
|
theorem mul_nat_abs (a b : ℤ) : nat_abs (a * b) = #nat (nat_abs a) * (nat_abs b) :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m,
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n, rfl)
|
|
|
|
|
(take n', !nat_abs_neg ▸ rfl))
|
|
|
|
|
(take m',
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n, !nat_abs_neg ▸ rfl)
|
|
|
|
|
(take n', rfl))
|
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
/- multiplication -/
|
|
|
|
|
|
|
|
|
|
definition pmul (p q : ℕ × ℕ) : ℕ × ℕ :=
|
|
|
|
|
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q)
|
|
|
|
|
|
|
|
|
|
theorem repr_neg_of_nat (m : ℕ) : repr (neg_of_nat m) = (0, m) :=
|
|
|
|
|
nat.cases_on m rfl (take m', rfl)
|
|
|
|
|
|
|
|
|
|
-- note: we have =, not just ≡
|
|
|
|
|
theorem repr_mul (a b : ℤ) : repr (mul a b) = pmul (repr a) (repr b) :=
|
|
|
|
|
cases_on a
|
|
|
|
|
(take m,
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n,
|
|
|
|
|
(calc
|
|
|
|
|
pmul (repr m) (repr n) = (m * n + 0 * 0, m * 0 + 0 * n) : rfl
|
2014-12-23 22:34:16 +00:00
|
|
|
|
... = (m * n + 0 * 0, m * 0 + 0) : zero_mul)⁻¹)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
(take n',
|
|
|
|
|
(calc
|
|
|
|
|
pmul (repr m) (repr (neg_succ_of_nat n')) =
|
|
|
|
|
(m * 0 + 0 * succ n', m * succ n' + 0 * 0) : rfl
|
2014-12-23 22:34:16 +00:00
|
|
|
|
... = (m * 0 + 0, m * succ n' + 0 * 0) : zero_mul
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = repr (mul m (neg_succ_of_nat n')) : repr_neg_of_nat)⁻¹))
|
|
|
|
|
(take m',
|
|
|
|
|
cases_on b
|
|
|
|
|
(take n,
|
|
|
|
|
(calc
|
|
|
|
|
pmul (repr (neg_succ_of_nat m')) (repr n) =
|
|
|
|
|
(0 * n + succ m' * 0, 0 * 0 + succ m' * n) : rfl
|
2014-12-23 22:34:16 +00:00
|
|
|
|
... = (0 + succ m' * 0, 0 * 0 + succ m' * n) : zero_mul
|
2014-12-24 02:14:19 +00:00
|
|
|
|
... = (0 + succ m' * 0, succ m' * n) : nat.zero_add
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = repr (mul (neg_succ_of_nat m') n) : repr_neg_of_nat)⁻¹)
|
|
|
|
|
(take n',
|
|
|
|
|
(calc
|
|
|
|
|
pmul (repr (neg_succ_of_nat m')) (repr (neg_succ_of_nat n')) =
|
|
|
|
|
(0 + succ m' * succ n', 0 * succ n') : rfl
|
2014-12-24 02:14:19 +00:00
|
|
|
|
... = (succ m' * succ n', 0 * succ n') : nat.zero_add
|
2014-12-23 22:34:16 +00:00
|
|
|
|
... = (succ m' * succ n', 0) : zero_mul
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = repr (mul (neg_succ_of_nat m') (neg_succ_of_nat n')) : rfl)⁻¹))
|
|
|
|
|
|
|
|
|
|
theorem equiv_mul_prep {xa ya xb yb xn yn xm ym : ℕ}
|
2014-08-20 02:32:44 +00:00
|
|
|
|
(H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm)
|
|
|
|
|
: xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) :=
|
|
|
|
|
have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
2014-08-22 00:54:50 +00:00
|
|
|
|
= xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
|
|
|
|
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
2014-08-22 00:54:50 +00:00
|
|
|
|
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
|
|
|
|
: by simp
|
|
|
|
|
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp
|
|
|
|
|
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp
|
|
|
|
|
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
|
|
|
|
: by simp
|
|
|
|
|
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
|
|
|
|
: by simp,
|
2014-10-02 01:39:47 +00:00
|
|
|
|
nat.add.cancel_right H3
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
|
|
|
|
equiv_mul_prep H1 H2
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-05 22:03:24 +00:00
|
|
|
|
theorem pmul_comm (p q : ℕ × ℕ) : pmul p q = pmul q p :=
|
|
|
|
|
calc
|
|
|
|
|
(pr1 p * pr1 q + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) =
|
|
|
|
|
(pr1 q * pr1 p + pr2 p * pr2 q, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
|
|
|
|
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 p * pr2 q + pr2 p * pr1 q) : mul.comm
|
|
|
|
|
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr2 p * pr1 q) : mul.comm
|
|
|
|
|
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr2 q * pr1 p + pr1 q * pr2 p) : mul.comm
|
2014-12-17 18:32:38 +00:00
|
|
|
|
... = (pr1 q * pr1 p + pr2 q * pr2 p, pr1 q * pr2 p + pr2 q * pr1 p) : nat.add.comm
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem mul.comm (a b : ℤ) : a * b = b * a :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
eq_of_repr_equiv_repr
|
|
|
|
|
((calc
|
|
|
|
|
repr (a * b) = pmul (repr a) (repr b) : repr_mul
|
|
|
|
|
... = pmul (repr b) (repr a) : pmul_comm
|
2014-12-17 18:32:38 +00:00
|
|
|
|
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
2014-12-05 22:03:24 +00:00
|
|
|
|
|
|
|
|
|
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
2014-08-20 02:32:44 +00:00
|
|
|
|
by simp
|
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
eq_of_repr_equiv_repr
|
|
|
|
|
((calc
|
|
|
|
|
repr (a * b * c) = pmul (repr (a * b)) (repr c) : repr_mul
|
|
|
|
|
... = pmul (pmul (repr a) (repr b)) (repr c) : repr_mul
|
|
|
|
|
... = pmul (repr a) (pmul (repr b) (repr c)) : pmul_assoc
|
|
|
|
|
... = pmul (repr a) (repr (b * c)) : repr_mul
|
2014-12-17 18:32:38 +00:00
|
|
|
|
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-24 02:14:19 +00:00
|
|
|
|
theorem mul_one (a : ℤ) : a * 1 = a :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
eq_of_repr_equiv_repr (equiv_of_eq
|
|
|
|
|
((calc
|
|
|
|
|
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
|
|
|
|
... = (pr1 (repr a), pr2 (repr a)) : by simp
|
|
|
|
|
... = repr a : prod.eta)))
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-24 02:14:19 +00:00
|
|
|
|
theorem one_mul (a : ℤ) : 1 * a = a :=
|
|
|
|
|
mul.comm a 1 ▸ mul_one a
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem mul.right_distrib (a b c : ℤ) : (a + b) * c = a * c + b * c :=
|
2014-12-05 22:03:24 +00:00
|
|
|
|
eq_of_repr_equiv_repr
|
|
|
|
|
(calc
|
|
|
|
|
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
2014-12-17 18:32:38 +00:00
|
|
|
|
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
2014-12-05 22:03:24 +00:00
|
|
|
|
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : by simp
|
|
|
|
|
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
|
|
|
|
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
2014-12-17 18:32:38 +00:00
|
|
|
|
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
2014-08-20 02:32:44 +00:00
|
|
|
|
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem mul.left_distrib (a b c : ℤ) : a * (b + c) = a * b + a * c :=
|
2014-08-20 02:32:44 +00:00
|
|
|
|
calc
|
2014-12-17 18:32:38 +00:00
|
|
|
|
a * (b + c) = (b + c) * a : mul.comm a (b + c)
|
|
|
|
|
... = b * a + c * a : mul.right_distrib b c a
|
|
|
|
|
... = a * b + c * a : {mul.comm b a}
|
|
|
|
|
... = a * b + a * c : {mul.comm c a}
|
|
|
|
|
|
|
|
|
|
theorem zero_ne_one : (typeof 0 : int) ≠ 1 :=
|
|
|
|
|
assume H : 0 = 1,
|
|
|
|
|
show false, from succ_ne_zero 0 ((of_nat_inj H)⁻¹)
|
|
|
|
|
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem eq_zero_or_eq_zero_of_mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 :=
|
|
|
|
|
have H2 : (nat_abs a) * (nat_abs b) = nat.zero, from
|
|
|
|
|
calc
|
|
|
|
|
(nat_abs a) * (nat_abs b) = (nat_abs (a * b)) : (mul_nat_abs a b)⁻¹
|
|
|
|
|
... = (nat_abs 0) : {H}
|
|
|
|
|
... = nat.zero : nat_abs_of_nat nat.zero,
|
2014-12-26 21:25:05 +00:00
|
|
|
|
have H3 : (nat_abs a) = nat.zero ∨ (nat_abs b) = nat.zero,
|
|
|
|
|
from eq_zero_or_eq_zero_of_mul_eq_zero H2,
|
2014-12-22 19:21:22 +00:00
|
|
|
|
or_of_or_of_imp_of_imp H3
|
|
|
|
|
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
|
|
|
|
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
|
|
|
|
|
2015-01-03 22:10:15 +00:00
|
|
|
|
section
|
|
|
|
|
open [classes] algebra
|
2014-12-17 18:32:38 +00:00
|
|
|
|
|
2015-01-03 22:10:15 +00:00
|
|
|
|
protected definition integral_domain [instance] : algebra.integral_domain int :=
|
|
|
|
|
algebra.integral_domain.mk add add.assoc zero zero_add add_zero neg add.left_inv
|
|
|
|
|
add.comm mul mul.assoc (of_num 1) one_mul mul_one mul.left_distrib mul.right_distrib
|
|
|
|
|
zero_ne_one mul.comm @eq_zero_or_eq_zero_of_mul_eq_zero
|
|
|
|
|
end
|
2014-12-26 21:25:05 +00:00
|
|
|
|
|
|
|
|
|
/- instantiate ring theorems to int -/
|
2014-12-17 18:32:38 +00:00
|
|
|
|
|
2014-12-26 21:25:05 +00:00
|
|
|
|
section port_algebra
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem mul.left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
|
|
|
|
theorem mul.right_comm : ∀a b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
|
|
|
|
theorem add.left_comm : ∀a b c : ℤ, a + (b + c) = b + (a + c) := algebra.add.left_comm
|
|
|
|
|
theorem add.right_comm : ∀a b c : ℤ, (a + b) + c = (a + c) + b := algebra.add.right_comm
|
|
|
|
|
theorem add.left_cancel : ∀{a b c : ℤ}, a + b = a + c → b = c := @algebra.add.left_cancel _ _
|
|
|
|
|
theorem add.right_cancel : ∀{a b c : ℤ}, a + b = c + b → a = c := @algebra.add.right_cancel _ _
|
|
|
|
|
theorem neg_add_cancel_left : ∀a b : ℤ, -a + (a + b) = b := algebra.neg_add_cancel_left
|
|
|
|
|
theorem neg_add_cancel_right : ∀a b : ℤ, a + -b + b = a := algebra.neg_add_cancel_right
|
|
|
|
|
theorem neg_eq_of_add_eq_zero : ∀{a b : ℤ}, a + b = 0 → -a = b :=
|
|
|
|
|
@algebra.neg_eq_of_add_eq_zero _ _
|
|
|
|
|
theorem neg_zero : -0 = 0 := algebra.neg_zero
|
|
|
|
|
theorem neg_neg : ∀a : ℤ, -(-a) = a := algebra.neg_neg
|
|
|
|
|
theorem neg.inj : ∀{a b : ℤ}, -a = -b → a = b := @algebra.neg.inj _ _
|
|
|
|
|
theorem neg_eq_neg_iff_eq : ∀a b : ℤ, -a = -b ↔ a = b := algebra.neg_eq_neg_iff_eq
|
|
|
|
|
theorem neg_eq_zero_iff_eq_zero : ∀a : ℤ, -a = 0 ↔ a = 0 := algebra.neg_eq_zero_iff_eq_zero
|
|
|
|
|
theorem eq_neg_of_eq_neg : ∀{a b : ℤ}, a = -b → b = -a := @algebra.eq_neg_of_eq_neg _ _
|
|
|
|
|
theorem eq_neg_iff_eq_neg : ∀{a b : ℤ}, a = -b ↔ b = -a := @algebra.eq_neg_iff_eq_neg _ _
|
|
|
|
|
theorem add.right_inv : ∀a : ℤ, a + -a = 0 := algebra.add.right_inv
|
|
|
|
|
theorem add_neg_cancel_left : ∀a b : ℤ, a + (-a + b) = b := algebra.add_neg_cancel_left
|
|
|
|
|
theorem add_neg_cancel_right : ∀a b : ℤ, a + b + -b = a := algebra.add_neg_cancel_right
|
2015-01-07 01:44:04 +00:00
|
|
|
|
theorem neg_add : ∀a b : ℤ, -(a + b) = -b + -a := algebra.neg_add
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem eq_add_neg_of_add_eq : ∀{a b c : ℤ}, a + b = c → a = c + -b :=
|
|
|
|
|
@algebra.eq_add_neg_of_add_eq _ _
|
|
|
|
|
theorem eq_neg_add_of_add_eq : ∀{a b c : ℤ}, a + b = c → b = -a + c :=
|
|
|
|
|
@algebra.eq_neg_add_of_add_eq _ _
|
|
|
|
|
theorem neg_add_eq_of_eq_add : ∀{a b c : ℤ}, a = b + c → -b + a = c :=
|
|
|
|
|
@algebra.neg_add_eq_of_eq_add _ _
|
|
|
|
|
theorem add_neg_eq_of_eq_add : ∀{a b c : ℤ}, a = b + c → a + -c = b :=
|
|
|
|
|
@algebra.add_neg_eq_of_eq_add _ _
|
|
|
|
|
theorem eq_add_of_add_neg_eq : ∀{a b c : ℤ}, a + -b = c → a = c + b :=
|
|
|
|
|
@algebra.eq_add_of_add_neg_eq _ _
|
|
|
|
|
theorem eq_add_of_neg_add_eq : ∀{a b c : ℤ}, -a + b = c → b = a + c :=
|
|
|
|
|
@algebra.eq_add_of_neg_add_eq _ _
|
|
|
|
|
theorem add_eq_of_eq_neg_add : ∀{a b c : ℤ}, a = -b + c → b + a = c :=
|
|
|
|
|
@algebra.add_eq_of_eq_neg_add _ _
|
|
|
|
|
theorem add_eq_of_eq_add_neg : ∀{a b c : ℤ}, a = b + -c → a + c = b :=
|
|
|
|
|
@algebra.add_eq_of_eq_add_neg _ _
|
|
|
|
|
theorem add_eq_iff_eq_neg_add : ∀a b c : ℤ, a + b = c ↔ b = -a + c :=
|
|
|
|
|
@algebra.add_eq_iff_eq_neg_add _ _
|
|
|
|
|
theorem add_eq_iff_eq_add_neg : ∀a b c : ℤ, a + b = c ↔ a = c + -b :=
|
|
|
|
|
@algebra.add_eq_iff_eq_add_neg _ _
|
2014-12-18 00:06:32 +00:00
|
|
|
|
definition sub (a b : ℤ) : ℤ := algebra.sub a b
|
|
|
|
|
infix - := int.sub
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem sub_self : ∀a : ℤ, a - a = 0 := algebra.sub_self
|
|
|
|
|
theorem sub_add_cancel : ∀a b : ℤ, a - b + b = a := algebra.sub_add_cancel
|
|
|
|
|
theorem add_sub_cancel : ∀a b : ℤ, a + b - b = a := algebra.add_sub_cancel
|
|
|
|
|
theorem eq_of_sub_eq_zero : ∀{a b : ℤ}, a - b = 0 → a = b := @algebra.eq_of_sub_eq_zero _ _
|
|
|
|
|
theorem eq_iff_sub_eq_zero : ∀a b : ℤ, a = b ↔ a - b = 0 := algebra.eq_iff_sub_eq_zero
|
2015-01-07 01:44:04 +00:00
|
|
|
|
theorem zero_sub : ∀a : ℤ, 0 - a = -a := algebra.zero_sub
|
|
|
|
|
theorem sub_zero : ∀a : ℤ, a - 0 = a := algebra.sub_zero
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem sub_neg_eq_add : ∀a b : ℤ, a - (-b) = a + b := algebra.sub_neg_eq_add
|
2015-01-07 01:44:04 +00:00
|
|
|
|
theorem neg_sub : ∀a b : ℤ, -(a - b) = b - a := algebra.neg_sub
|
|
|
|
|
theorem add_sub : ∀a b c : ℤ, a + (b - c) = a + b - c := algebra.add_sub
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem sub_add_eq_sub_sub_swap : ∀a b c : ℤ, a - (b + c) = a - c - b :=
|
|
|
|
|
algebra.sub_add_eq_sub_sub_swap
|
|
|
|
|
theorem sub_eq_iff_eq_add : ∀a b c : ℤ, a - b = c ↔ a = c + b := algebra.sub_eq_iff_eq_add
|
|
|
|
|
theorem eq_sub_iff_add_eq : ∀a b c : ℤ, a = b - c ↔ a + c = b := algebra.eq_sub_iff_add_eq
|
|
|
|
|
theorem eq_iff_eq_of_sub_eq_sub : ∀{a b c d : ℤ}, a - b = c - d → a = b ↔ c = d :=
|
|
|
|
|
@algebra.eq_iff_eq_of_sub_eq_sub _ _
|
|
|
|
|
theorem sub_add_eq_sub_sub : ∀a b c : ℤ, a - (b + c) = a - b - c := algebra.sub_add_eq_sub_sub
|
|
|
|
|
theorem neg_add_eq_sub : ∀a b : ℤ, -a + b = b - a := algebra.neg_add_eq_sub
|
|
|
|
|
theorem neg_add_distrib : ∀a b : ℤ, -(a + b) = -a + -b := algebra.neg_add_distrib
|
|
|
|
|
theorem sub_add_eq_add_sub : ∀a b c : ℤ, a - b + c = a + c - b := algebra.sub_add_eq_add_sub
|
2015-01-07 01:44:04 +00:00
|
|
|
|
theorem sub_sub_ : ∀a b c : ℤ, a - b - c = a - (b + c) := algebra.sub_sub
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem add_sub_add_left_eq_sub : ∀a b c : ℤ, (c + a) - (c + b) = a - b :=
|
|
|
|
|
algebra.add_sub_add_left_eq_sub
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem ne_zero_of_mul_ne_zero_right : ∀{a b : ℤ}, a * b ≠ 0 → a ≠ 0 :=
|
|
|
|
|
@algebra.ne_zero_of_mul_ne_zero_right _ _
|
|
|
|
|
theorem ne_zero_of_mul_ne_zero_left : ∀{a b : ℤ}, a * b ≠ 0 → b ≠ 0 :=
|
|
|
|
|
@algebra.ne_zero_of_mul_ne_zero_left _ _
|
|
|
|
|
definition dvd (a b : ℤ) : Prop := algebra.dvd a b
|
|
|
|
|
infix `|` := dvd
|
|
|
|
|
theorem dvd.intro : ∀{a b c : ℤ} (H : a * b = c), a | c := @algebra.dvd.intro _ _
|
2014-12-26 21:25:05 +00:00
|
|
|
|
theorem dvd.intro_right : ∀{a b c : ℤ} (H : a * b = c), b | c := @algebra.dvd.intro_right _ _
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem dvd.ex : ∀{a b : ℤ} (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _
|
|
|
|
|
theorem dvd.elim : ∀{P : Prop} {a b : ℤ} (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P :=
|
|
|
|
|
@algebra.dvd.elim _ _
|
|
|
|
|
theorem dvd.refl : ∀a : ℤ, a | a := algebra.dvd.refl
|
|
|
|
|
theorem dvd.trans : ∀{a b c : ℤ} (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _
|
2014-12-24 00:46:48 +00:00
|
|
|
|
theorem eq_zero_of_zero_dvd : ∀{a : ℤ} (H : 0 | a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem dvd_zero : ∀a : ℤ, a | 0 := algebra.dvd_zero
|
|
|
|
|
theorem one_dvd : ∀a : ℤ, 1 | a := algebra.one_dvd
|
|
|
|
|
theorem dvd_mul_right : ∀a b : ℤ, a | a * b := algebra.dvd_mul_right
|
|
|
|
|
theorem dvd_mul_left : ∀a b : ℤ, a | b * a := algebra.dvd_mul_left
|
|
|
|
|
theorem dvd_mul_of_dvd_left : ∀{a b : ℤ} (H : a | b) (c : ℤ), a | b * c :=
|
|
|
|
|
@algebra.dvd_mul_of_dvd_left _ _
|
|
|
|
|
theorem dvd_mul_of_dvd_right : ∀{a b : ℤ} (H : a | b) (c : ℤ), a | c * b :=
|
|
|
|
|
@algebra.dvd_mul_of_dvd_right _ _
|
|
|
|
|
theorem mul_dvd_mul : ∀{a b c d : ℤ}, a | b → c | d → a * c | b * d :=
|
|
|
|
|
@algebra.mul_dvd_mul _ _
|
|
|
|
|
theorem dvd_of_mul_right_dvd : ∀{a b c : ℤ}, a * b | c → a | c :=
|
|
|
|
|
@algebra.dvd_of_mul_right_dvd _ _
|
|
|
|
|
theorem dvd_of_mul_left_dvd : ∀{a b c : ℤ}, a * b | c → b | c :=
|
|
|
|
|
@algebra.dvd_of_mul_left_dvd _ _
|
|
|
|
|
theorem dvd_add : ∀{a b c : ℤ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _
|
2014-12-23 22:34:16 +00:00
|
|
|
|
theorem zero_mul : ∀a : ℤ, 0 * a = 0 := algebra.zero_mul
|
|
|
|
|
theorem mul_zero : ∀a : ℤ, a * 0 = 0 := algebra.mul_zero
|
2014-12-17 18:32:38 +00:00
|
|
|
|
theorem neg_mul_eq_neg_mul : ∀a b : ℤ, -(a * b) = -a * b := algebra.neg_mul_eq_neg_mul
|
|
|
|
|
theorem neg_mul_eq_mul_neg : ∀a b : ℤ, -(a * b) = a * -b := algebra.neg_mul_eq_mul_neg
|
|
|
|
|
theorem neg_mul_neg_eq : ∀a b : ℤ, -a * -b = a * b := algebra.neg_mul_neg_eq
|
|
|
|
|
theorem neg_mul_comm : ∀a b : ℤ, -a * b = a * -b := algebra.neg_mul_comm
|
|
|
|
|
theorem mul_sub_left_distrib : ∀a b c : ℤ, a * (b - c) = a * b - a * c :=
|
|
|
|
|
algebra.mul_sub_left_distrib
|
|
|
|
|
theorem mul_sub_right_distrib : ∀a b c : ℤ, (a - b) * c = a * c - b * c :=
|
|
|
|
|
algebra.mul_sub_right_distrib
|
|
|
|
|
theorem mul_add_eq_mul_add_iff_sub_mul_add_eq :
|
|
|
|
|
∀a b c d e : ℤ, a * e + c = b * e + d ↔ (a - b) * e + c = d :=
|
|
|
|
|
algebra.mul_add_eq_mul_add_iff_sub_mul_add_eq
|
|
|
|
|
theorem mul_self_sub_mul_self_eq : ∀a b : ℤ, a * a - b * b = (a + b) * (a - b) :=
|
|
|
|
|
algebra.mul_self_sub_mul_self_eq
|
|
|
|
|
theorem mul_self_sub_one_eq : ∀a : ℤ, a * a - 1 = (a + 1) * (a - 1) :=
|
|
|
|
|
algebra.mul_self_sub_one_eq
|
2014-12-22 19:21:22 +00:00
|
|
|
|
theorem dvd_neg_iff_dvd : ∀a b : ℤ, a | -b ↔ a | b := algebra.dvd_neg_iff_dvd
|
|
|
|
|
theorem neg_dvd_iff_dvd : ∀a b : ℤ, -a | b ↔ a | b := algebra.neg_dvd_iff_dvd
|
|
|
|
|
theorem dvd_sub : ∀a b c : ℤ, a | b → a | c → a | (b - c) := algebra.dvd_sub
|
|
|
|
|
theorem mul_ne_zero : ∀{a b : ℤ}, a ≠ 0 → b ≠ 0 → a * b ≠ 0 := @algebra.mul_ne_zero _ _
|
|
|
|
|
theorem mul.cancel_right : ∀{a b c : ℤ}, a ≠ 0 → b * a = c * a → b = c :=
|
|
|
|
|
@algebra.mul.cancel_right _ _
|
|
|
|
|
theorem mul.cancel_left : ∀{a b c : ℤ}, a ≠ 0 → a * b = a * c → b = c :=
|
|
|
|
|
@algebra.mul.cancel_left _ _
|
|
|
|
|
theorem mul_self_eq_mul_self_iff : ∀a b : ℤ, a * a = b * b ↔ a = b ∨ a = -b :=
|
|
|
|
|
algebra.mul_self_eq_mul_self_iff
|
|
|
|
|
theorem mul_self_eq_one_iff : ∀a : ℤ, a * a = 1 ↔ a = 1 ∨ a = -1 :=
|
|
|
|
|
algebra.mul_self_eq_one_iff
|
|
|
|
|
theorem dvd_of_mul_dvd_mul_left : ∀{a b c : ℤ}, a ≠ 0 → a * b | a * c → b | c :=
|
|
|
|
|
@algebra.dvd_of_mul_dvd_mul_left _ _
|
|
|
|
|
theorem dvd_of_mul_dvd_mul_right : ∀{a b c : ℤ}, a ≠ 0 → b * a | c * a → b | c :=
|
|
|
|
|
@algebra.dvd_of_mul_dvd_mul_right _ _
|
2014-12-17 18:32:38 +00:00
|
|
|
|
end port_algebra
|
|
|
|
|
|
2014-09-17 21:39:05 +00:00
|
|
|
|
end int
|