lean2/hott/types/prod.hlean

48 lines
1.3 KiB
Text
Raw Normal View History

2014-12-11 23:14:53 -05:00
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about products
-/
2014-12-12 13:17:50 -05:00
import init.trunc init.datatypes
open eq equiv is_equiv truncation prod
2014-12-11 23:14:53 -05:00
variables {A A' B B' C D : Type}
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
namespace prod
-- prod.eta is already used for the eta rule for strict equality
2014-12-12 13:17:50 -05:00
protected definition peta (u : A × B) : (pr₁ u , pr₂ u) = u :=
2014-12-11 23:14:53 -05:00
destruct u (λu1 u2, idp)
2014-12-12 13:17:50 -05:00
definition pair_path (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
eq.rec_on pa (eq.rec_on pb idp)
2014-12-11 23:14:53 -05:00
2014-12-12 13:17:50 -05:00
protected definition path : (pr₁ u = pr₁ v) → (pr₂ u = pr₂ v) → u = v :=
2014-12-11 23:14:53 -05:00
begin
apply (prod.rec_on u), intros (a₁, b₁),
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
apply (transport _ (peta (a₁, b₁))),
apply (transport _ (peta (a₂, b₂))),
apply (pair_path H₁ H₂),
end
/- Symmetry -/
definition isequiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
adjointify flip
flip
(λu, destruct u (λb a, idp))
(λu, destruct u (λa b, idp))
definition symm_equiv (A B : Type) : A × B ≃ B × A :=
equiv.mk flip _
-- trunc_prod is defined in sigma
end prod