2014-12-01 04:34:12 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
Authors: Leonardo de Moura
|
|
|
|
-/
|
|
|
|
prelude
|
|
|
|
import init.logic init.bool
|
2014-11-07 16:21:42 +00:00
|
|
|
open bool
|
|
|
|
|
|
|
|
definition pos_num.is_inhabited [instance] : inhabited pos_num :=
|
|
|
|
inhabited.mk pos_num.one
|
|
|
|
|
|
|
|
namespace pos_num
|
|
|
|
definition succ (a : pos_num) : pos_num :=
|
|
|
|
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
|
|
|
|
|
|
|
definition is_one (a : pos_num) : bool :=
|
|
|
|
rec_on a tt (λn r, ff) (λn r, ff)
|
|
|
|
|
|
|
|
definition pred (a : pos_num) : pos_num :=
|
|
|
|
rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r))
|
|
|
|
|
|
|
|
definition size (a : pos_num) : pos_num :=
|
|
|
|
rec_on a one (λn r, succ r) (λn r, succ r)
|
|
|
|
|
|
|
|
definition add (a b : pos_num) : pos_num :=
|
|
|
|
rec_on a
|
|
|
|
succ
|
|
|
|
(λn f b, rec_on b
|
|
|
|
(succ (bit1 n))
|
|
|
|
(λm r, succ (bit1 (f m)))
|
|
|
|
(λm r, bit1 (f m)))
|
|
|
|
(λn f b, rec_on b
|
|
|
|
(bit1 n)
|
|
|
|
(λm r, bit1 (f m))
|
|
|
|
(λm r, bit0 (f m)))
|
|
|
|
b
|
|
|
|
|
|
|
|
notation a + b := add a b
|
|
|
|
|
|
|
|
definition mul (a b : pos_num) : pos_num :=
|
|
|
|
rec_on a
|
|
|
|
b
|
|
|
|
(λn r, bit0 r + b)
|
|
|
|
(λn r, bit0 r)
|
|
|
|
|
|
|
|
notation a * b := mul a b
|
|
|
|
|
|
|
|
end pos_num
|
|
|
|
|
|
|
|
definition num.is_inhabited [instance] : inhabited num :=
|
|
|
|
inhabited.mk num.zero
|
|
|
|
|
|
|
|
namespace num
|
|
|
|
open pos_num
|
|
|
|
definition succ (a : num) : num :=
|
|
|
|
rec_on a (pos one) (λp, pos (succ p))
|
|
|
|
|
|
|
|
definition pred (a : num) : num :=
|
|
|
|
rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
|
|
|
|
|
|
|
|
definition size (a : num) : num :=
|
|
|
|
rec_on a (pos one) (λp, pos (size p))
|
|
|
|
|
|
|
|
definition add (a b : num) : num :=
|
|
|
|
rec_on a b (λp_a, rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b)))
|
|
|
|
|
|
|
|
definition mul (a b : num) : num :=
|
|
|
|
rec_on a zero (λp_a, rec_on b zero (λp_b, pos (pos_num.mul p_a p_b)))
|
|
|
|
|
|
|
|
notation a + b := add a b
|
|
|
|
notation a * b := mul a b
|
|
|
|
end num
|