20 lines
566 B
Text
20 lines
566 B
Text
|
open nat prod
|
|||
|
|
|||
|
inductive ifin : ℕ → Type := -- inductively defined fin-type
|
|||
|
| fz : Π n, ifin (succ n)
|
|||
|
| fs : Π {n}, ifin n → ifin (succ n)
|
|||
|
|
|||
|
open ifin
|
|||
|
|
|||
|
definition foo {N : Type} : Π{n : ℕ}, N → ifin n → (N × ifin n)
|
|||
|
| (succ k) n (fz k) := sorry
|
|||
|
| (succ k) n (fs x) := sorry
|
|||
|
|
|||
|
definition bar {N : Type} : Π{n : ℕ}, (N × ifin n) → (N × ifin n)
|
|||
|
| ⌞succ k⌟ (n, fz k) := sorry
|
|||
|
| ⌞succ k⌟ (n, fs x) := sorry
|
|||
|
|
|||
|
definition bar2 {N : Type} : Π{n : ℕ}, (N × ifin n) → (N × ifin n)
|
|||
|
| (succ k) (n, fz k) := sorry
|
|||
|
| (succ k) (n, fs x) := sorry
|