19 lines
566 B
Text
19 lines
566 B
Text
open nat prod
|
||
|
||
inductive ifin : ℕ → Type := -- inductively defined fin-type
|
||
| fz : Π n, ifin (succ n)
|
||
| fs : Π {n}, ifin n → ifin (succ n)
|
||
|
||
open ifin
|
||
|
||
definition foo {N : Type} : Π{n : ℕ}, N → ifin n → (N × ifin n)
|
||
| (succ k) n (fz k) := sorry
|
||
| (succ k) n (fs x) := sorry
|
||
|
||
definition bar {N : Type} : Π{n : ℕ}, (N × ifin n) → (N × ifin n)
|
||
| ⌞succ k⌟ (n, fz k) := sorry
|
||
| ⌞succ k⌟ (n, fs x) := sorry
|
||
|
||
definition bar2 {N : Type} : Π{n : ℕ}, (N × ifin n) → (N × ifin n)
|
||
| (succ k) (n, fz k) := sorry
|
||
| (succ k) (n, fs x) := sorry
|