lean2/src/library/tactic/apply_tactic.cpp

155 lines
6.5 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <utility>
#include <algorithm>
#include "kernel/environment.h"
#include "kernel/instantiate.h"
#include "library/fo_unify.h"
#include "library/kernel_bindings.h"
#include "library/type_inferer.h"
#include "library/tactic/goal.h"
#include "library/tactic/proof_builder.h"
#include "library/tactic/proof_state.h"
#include "library/tactic/tactic.h"
#include "library/tactic/apply_tactic.h"
namespace lean {
static name g_tmp_mvar_name = name::mk_internal_unique_name();
static optional<proof_state> apply_tactic(environment const & env, proof_state const & s,
expr const & th, expr const & th_type, bool all) {
precision prec = s.get_precision();
if (prec != precision::Precise && prec != precision::Over) {
// it is pointless to apply this tactic, since it will produce UnderOver
return none_proof_state();
}
unsigned num = 0;
expr th_type_c = th_type;
while (is_pi(th_type_c)) {
num++;
th_type_c = abst_body(th_type_c);
}
buffer<expr> mvars;
for (unsigned i = 0; i < num; i++)
mvars.push_back(mk_metavar(name(g_tmp_mvar_name, i)));
th_type_c = instantiate_with_closed_relaxed(th_type_c, mvars.size(), mvars.data());
bool found = false;
buffer<std::pair<name, goal>> new_goals_buf;
// The proof is based on an application of th.
// There are two kinds of arguments:
// 1) regular arguments computed using unification.
// 2) propostions that generate new subgoals.
// We use a pair to simulate this "union" type.
typedef list<std::pair<expr, name>> arg_list;
// We may solve more than one goal.
// We store the solved goals using a list of pairs
// name, args. Where the 'name' is the name of the solved goal.
type_inferer inferer(env);
metavar_env new_menv = s.get_menv();
list<std::pair<name, arg_list>> proof_info;
for (auto const & p : s.get_goals()) {
check_interrupted();
if (all || !found) {
name const & gname = p.first;
goal const & g = p.second;
expr const & c = g.get_conclusion();
optional<substitution> subst = fo_unify(th_type_c, c);
if (subst) {
found = true;
th_type_c = th_type;
arg_list l;
unsigned new_goal_idx = 1;
for (auto const & mvar : mvars) {
expr mvar_sol = apply(*subst, mvar);
if (mvar_sol != mvar) {
l.emplace_front(mvar_sol, name());
th_type_c = instantiate(abst_body(th_type_c), mvar_sol);
} else {
if (inferer.is_proposition(abst_domain(th_type_c))) {
name new_gname(gname, new_goal_idx);
new_goal_idx++;
l.emplace_front(expr(), new_gname);
new_goals_buf.emplace_back(new_gname, update(g, abst_domain(th_type_c)));
th_type_c = instantiate(abst_body(th_type_c), mk_constant(new_gname, abst_domain(th_type_c)));
} else {
// we have to create a new metavar in menv
// since we do not have a substitution for mvar, and
// it is not a proposition
expr new_m = new_menv.mk_metavar(context(), abst_domain(th_type_c));
l.emplace_front(new_m, name());
// we use instantiate_with_closed_relaxed because we do not want
// to introduce a lift operator in the new_m
th_type_c = instantiate_with_closed_relaxed(abst_body(th_type_c), 1, &new_m);
}
}
}
proof_info.emplace_front(gname, l);
} else {
new_goals_buf.push_back(p);
}
} else {
new_goals_buf.push_back(p);
}
}
if (found) {
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
for (auto const & p1 : proof_info) {
name const & gname = p1.first;
arg_list const & l = p1.second;
buffer<expr> args;
args.push_back(th);
for (auto const & p2 : l) {
expr const & arg = p2.first;
if (arg) {
// TODO(Leo): decide if we instantiate the metavars in the end or not.
args.push_back(arg);
} else {
name const & subgoal_name = p2.second;
args.push_back(find(m, subgoal_name));
new_m.erase(subgoal_name);
}
}
std::reverse(args.begin() + 1, args.end());
new_m.insert(gname, mk_app(args));
}
return pb(new_m, a);
});
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end());
return some(proof_state(precision::Over, new_gs, new_menv, new_pb, s.get_cex_builder()));
} else {
return none_proof_state();
}
}
tactic apply_tactic(expr const & th, expr const & th_type, bool all) {
return mk_tactic01([=](environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
return apply_tactic(env, s, th, th_type, all);
});
}
tactic apply_tactic(name const & th_name, bool all) {
return mk_tactic01([=](environment const & env, io_state const &, proof_state const & s) -> optional<proof_state> {
object const & obj = env.find_object(th_name);
if (obj && (obj.is_theorem() || obj.is_axiom()))
return apply_tactic(env, s, mk_constant(th_name), obj.get_type(), all);
else
return none_proof_state();
});
}
int mk_apply_tactic(lua_State * L) {
int nargs = lua_gettop(L);
return push_tactic(L, apply_tactic(to_name_ext(L, 1), nargs >= 2 ? lua_toboolean(L, 2) : true));
}
void open_apply_tactic(lua_State * L) {
SET_GLOBAL_FUN(mk_apply_tactic, "apply_tactic");
}
}