lean2/library/data/finset/card.lean

131 lines
6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Cardinality calculations for finite sets.
-/
import .to_set .bigops data.set.function data.nat.power data.nat.bigops
open nat eq.ops
namespace finset
variables {A B : Type}
variables [deceqA : decidable_eq A] [deceqB : decidable_eq B]
include deceqA
theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ s₂) + card (s₁ ∩ s₂) :=
finset.induction_on s₂
(show card s₁ + card ∅ = card (s₁ ∅) + card (s₁ ∩ ∅),
by rewrite [union_empty, card_empty, inter_empty])
(take s₂ a,
assume ans2: a ∉ s₂,
assume IH : card s₁ + card s₂ = card (s₁ s₂) + card (s₁ ∩ s₂),
show card s₁ + card (insert a s₂) = card (s₁ (insert a s₂)) + card (s₁ ∩ (insert a s₂)),
from decidable.by_cases
(assume as1 : a ∈ s₁,
assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'),
begin
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter.distrib_left, inter.comm],
rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc],
rewrite IH
end)
(assume ans1 : a ∉ s₁,
assert H : a ∉ s₁ s₂, from assume H',
or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2),
begin
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
rewrite [card_insert_of_not_mem H, insert_eq, inter.distrib_left, inter.comm],
rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm],
rewrite [-add.assoc, IH]
end))
theorem card_union (s₁ s₂ : finset A) : card (s₁ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
calc
card (s₁ s₂) = card (s₁ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card
theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) :
card (s₁ s₂) = card s₁ + card s₂ :=
by rewrite [card_union, H]
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ :=
have H1 : s₁ ∩ (s₂ \ s₁) = ∅,
from inter_eq_empty (take x, assume H1 H2, not_mem_of_mem_diff H2 H1),
calc
card s₂ = card (s₁ (s₂ \ s₁)) : union_diff_cancel H
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
... ≥ card s₁ : le_add_right
section card_image
open set
include deceqB
theorem card_image_eq_of_inj_on {f : A → B} {s : finset A} :
inj_on f (ts s) → card (image f s) = card s :=
finset.induction_on s
(assume H : inj_on f (ts empty), calc
card (image f empty) = 0 : card_empty
... = card empty : card_empty)
(take t a,
assume H : a ∉ t,
assume IH : inj_on f (ts t) → card (image f t) = card t,
assume H1 : inj_on f (ts (insert a t)),
have H2 : ts t ⊆ ts (insert a t), by rewrite [-subset_eq_to_set_subset]; apply subset_insert,
have H3 : card (image f t) = card t, from IH (inj_on_of_inj_on_of_subset H1 H2),
have H4 : f a ∉ image f t,
proof
assume H5 : f a ∈ image f t,
obtain x (H6l : x ∈ t) (H6r : f x = f a), from exists_of_mem_image H5,
have H7 : x = a, from H1 (mem_insert_of_mem _ H6l) !mem_insert H6r,
show false, from H (H7 ▸ H6l)
qed,
calc
card (image f (insert a t)) = card (insert (f a) (image f t)) : image_insert
... = card (image f t) + 1 : card_insert_of_not_mem H4
... = card t + 1 : H3
... = card (insert a t) : card_insert_of_not_mem H)
end card_image
theorem Sum_const_eq_card_mul (s : finset A) (n : nat) : (∑ x ∈ s, n) = card s * n :=
finset.induction_on s
(by rewrite [Sum_empty, card_empty, zero_mul])
(take s' a, assume H : a ∉ s',
assume IH,
by rewrite [Sum_insert_of_not_mem _ H, IH, card_insert_of_not_mem H, add.comm,
mul.right_distrib, one_mul])
theorem Sum_one_eq_card (s : finset A) : (∑ x ∈ s, (1 : nat)) = card s :=
eq.trans !Sum_const_eq_card_mul !mul_one
section deceqB
include deceqB
theorem card_Union_of_disjoint (s : finset A) (f : A → finset B) :
(∀{a₁ a₂}, a₁ ∈ s → a₂ ∈ s → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅) →
card ( x ∈ s, f x) = ∑ x ∈ s, card (f x) :=
finset.induction_on s
(assume H, by rewrite [Union_empty, Sum_empty, card_empty])
(take s' a, assume H : a ∉ s',
assume IH,
assume H1 : ∀ {a₁ a₂ : A}, a₁ ∈ insert a s' → a₂ ∈ insert a s' → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅,
have H2 : ∀ a₁ a₂ : A, a₁ ∈ s' → a₂ ∈ s' → a₁ ≠ a₂ → f a₁ ∩ f a₂ = ∅, from
take a₁ a₂, assume H3 H4 H5,
H1 (!mem_insert_of_mem H3) (!mem_insert_of_mem H4) H5,
assert H6 : card ( (x : A) ∈ s', f x) = ∑ (x : A) ∈ s', card (f x), from IH H2,
have H7 : ∀ x, x ∈ s' → f a ∩ f x = ∅, from
take x, assume xs',
have anex : a ≠ x, from assume aex, (eq.subst aex H) xs',
H1 !mem_insert (!mem_insert_of_mem xs') anex,
assert H8 : f a ∩ ( (x : A) ∈ s', f x) = ∅, from
calc
f a ∩ ( (x : A) ∈ s', f x) = ( (x : A) ∈ s', f a ∩ f x) : inter_Union
... = ( (x : A) ∈ s', ∅) : Union_ext H7
... = ∅ : Union_empty',
by rewrite [Union_insert_of_not_mem _ H, Sum_insert_of_not_mem _ H,
card_union_of_disjoint H8, H6])
end deceqB
end finset