2015-05-01 21:26:31 +00:00
|
|
|
|
Prop:Type
|
|
|
|
|
theorem:definition
|
2015-05-05 21:25:35 +00:00
|
|
|
|
by simp;by exact sorry
|
|
|
|
|
|
|
|
|
|
true:unit
|
|
|
|
|
trivial:star
|
|
|
|
|
is_true:is_unit
|
|
|
|
|
|
|
|
|
|
false:empty
|
|
|
|
|
is_false:is_empty
|
|
|
|
|
|
2015-05-01 21:26:31 +00:00
|
|
|
|
induction:rec
|
|
|
|
|
induction_on:rec_on
|
2015-05-05 21:25:35 +00:00
|
|
|
|
|
2015-05-01 21:26:31 +00:00
|
|
|
|
∨;⊎
|
|
|
|
|
or.elim:sum.rec_on
|
|
|
|
|
or.inl:sum.inl
|
|
|
|
|
or.inr:sum.inr
|
2015-05-05 21:25:35 +00:00
|
|
|
|
or.intro_left _;sum.inl
|
|
|
|
|
or.intro_right _;sum.inr
|
|
|
|
|
or_resolve_right:sum_resolve_right
|
|
|
|
|
or_resolve_left:sum_resolve_left
|
|
|
|
|
or.swap:sum.swap
|
|
|
|
|
or.rec_on:sum.rec_on
|
|
|
|
|
or_of_or_of_imp_of_imp:sum_of_sum_of_imp_of_imp
|
|
|
|
|
or_of_or_of_imp_left:sum_of_sum_of_imp_left
|
|
|
|
|
or_of_or_of_imp_right:sum_of_sum_of_imp_right
|
|
|
|
|
|
2015-05-01 21:26:31 +00:00
|
|
|
|
∧;×
|
|
|
|
|
and.intro:pair
|
|
|
|
|
and.left:
|
2015-05-05 21:25:35 +00:00
|
|
|
|
and.elim_left:prod.pr1
|
|
|
|
|
and.left:prod.pr1
|
|
|
|
|
and.elim_right:prod.pr2
|
|
|
|
|
and.right:prod.pr2
|
|
|
|
|
|
|
|
|
|
∀;Π
|
|
|
|
|
|
2015-05-01 21:26:31 +00:00
|
|
|
|
∃;Σ
|
|
|
|
|
exists.intro:sigma.mk
|
2015-05-05 21:25:35 +00:00
|
|
|
|
exists.elim:sigma.rec_on
|
|
|
|
|
|
|
|
|
|
eq.symm:inverse
|
2015-05-01 21:26:31 +00:00
|
|
|
|
congr_arg:ap
|