2014-11-07 08:53:14 -08:00
|
|
|
import logic data.bool
|
2014-09-03 16:00:38 -07:00
|
|
|
open bool
|
2014-07-23 08:22:53 -07:00
|
|
|
|
|
|
|
namespace set
|
|
|
|
|
|
|
|
definition set (T : Type) := T → bool
|
2014-07-28 19:58:57 -07:00
|
|
|
definition mem {T : Type} (a : T) (s : set T) := s a = tt
|
2014-10-21 15:27:45 -07:00
|
|
|
infix `∈` := mem
|
2014-07-23 08:22:53 -07:00
|
|
|
|
|
|
|
section
|
2014-10-09 07:13:06 -07:00
|
|
|
variable {T : Type}
|
2014-07-23 08:22:53 -07:00
|
|
|
|
2014-07-28 19:58:57 -07:00
|
|
|
definition empty : set T := λx, ff
|
2014-07-23 08:22:53 -07:00
|
|
|
notation `∅` := empty
|
|
|
|
|
|
|
|
theorem mem_empty (x : T) : ¬ (x ∈ ∅)
|
2014-12-15 15:05:44 -05:00
|
|
|
:= not.intro (λH : x ∈ ∅, absurd H ff_ne_tt)
|
2014-08-07 16:59:08 -07:00
|
|
|
end
|
|
|
|
|
2014-09-03 16:00:38 -07:00
|
|
|
end set
|