lean2/src/library/tactic/inversion_tactic.cpp

452 lines
20 KiB
C++
Raw Normal View History

/*
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "util/sstream.h"
#include "kernel/abstract.h"
#include "kernel/instantiate.h"
#include "kernel/inductive/inductive.h"
#include "library/locals.h"
#include "library/tactic/tactic.h"
#include "library/reducible.h"
#include "library/tactic/expr_to_tactic.h"
namespace lean {
class inversion_tac {
environment const & m_env;
io_state const & m_ios;
proof_state const & m_ps;
name_generator m_ngen;
substitution m_subst;
std::unique_ptr<type_checker> m_tc;
bool m_dep_elim;
unsigned m_nparams;
unsigned m_nindices;
unsigned m_nminors;
declaration m_I_decl;
declaration m_cases_on_decl;
void init_inductive_info(name const & n) {
m_dep_elim = inductive::has_dep_elim(m_env, n);
m_nindices = *inductive::get_num_indices(m_env, n);
m_nparams = *inductive::get_num_params(m_env, n);
m_nminors = *inductive::get_num_minor_premises(m_env, n);
m_I_decl = m_env.get(n);
m_cases_on_decl = m_env.get({n, "cases_on"});
}
bool is_inversion_applicable(expr const & t) {
buffer<expr> args;
expr const & fn = get_app_args(t, args);
if (!is_constant(fn))
return false;
if (!inductive::is_inductive_decl(m_env, const_name(fn)))
return false;
if (!m_env.find(name{const_name(fn), "cases_on"}) ||
!m_env.find(name("eq")) || !m_env.find(name("heq")))
return false;
init_inductive_info(const_name(fn));
if (args.size() != m_nindices + m_nparams)
return false;
return true;
}
pair<expr, expr> mk_eq(expr const & lhs, expr const & rhs) {
expr lhs_type = m_tc->infer(lhs).first;
expr rhs_type = m_tc->infer(rhs).first;
level l = sort_level(m_tc->ensure_type(lhs_type).first);
constraint_seq cs;
if (m_tc->is_def_eq(lhs_type, rhs_type, justification(), cs) && !cs) {
return mk_pair(mk_app(mk_constant("eq", to_list(l)), lhs_type, lhs, rhs),
mk_app(mk_constant({"eq", "refl"}, to_list(l)), rhs_type, rhs));
} else {
return mk_pair(mk_app(mk_constant("heq", to_list(l)), lhs_type, lhs, rhs_type, rhs),
mk_app(mk_constant({"heq", "refl"}, to_list(l)), rhs_type, rhs));
}
}
goal generalize_indices(goal const & g, expr const & h, expr const & h_type) {
buffer<expr> hyps;
g.get_hyps(hyps);
expr m = g.get_meta();
expr m_type = g.get_type();
name h_new_name = get_unused_name(local_pp_name(h), hyps);
buffer<expr> I_args;
expr const & I = get_app_args(h_type, I_args);
expr h_new_type = mk_app(I, I_args.size() - m_nindices, I_args.data());
expr d = m_tc->whnf(m_tc->infer(h_new_type).first).first;
unsigned eq_idx = 1;
name eq_prefix("H");
buffer<expr> ts;
buffer<expr> eqs;
buffer<expr> refls;
name t_prefix("t");
unsigned nidx = 1;
auto add_eq = [&](expr const & lhs, expr const & rhs) {
pair<expr, expr> p = mk_eq(lhs, rhs);
expr new_eq = p.first;
expr new_refl = p.second;
eqs.push_back(mk_local(m_ngen.next(), g.get_unused_name(eq_prefix, eq_idx), new_eq, binder_info()));
refls.push_back(new_refl);
};
for (unsigned i = I_args.size() - m_nindices; i < I_args.size(); i++) {
expr t_type = binding_domain(d);
expr t = mk_local(m_ngen.next(), g.get_unused_name(t_prefix, nidx), t_type, binder_info());
expr const & index = I_args[i];
add_eq(t, index);
h_new_type = mk_app(h_new_type, t);
hyps.push_back(t);
ts.push_back(t);
d = instantiate(binding_body(d), t);
}
expr h_new = mk_local(m_ngen.next(), h_new_name, h_new_type, local_info(h));
if (m_dep_elim)
add_eq(h_new, h);
hyps.push_back(h_new);
expr new_type = Pi(eqs, g.get_type());
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
goal new_g(new_meta, new_type);
expr val = g.abstract(mk_app(mk_app(mk_app(Fun(ts, Fun(h_new, new_meta)), m_nindices, I_args.end() - m_nindices), h),
refls));
m_subst.assign(g.get_name(), val);
return new_g;
}
list<goal> apply_cases_on(goal const & g) {
buffer<expr> hyps;
g.get_hyps(hyps);
expr const & h = hyps.back();
expr const & h_type = mlocal_type(h);
buffer<expr> I_args;
expr const & I = get_app_args(h_type, I_args);
expr g_type = g.get_type();
expr cases_on;
if (length(m_cases_on_decl.get_univ_params()) != length(m_I_decl.get_univ_params())) {
level g_lvl = sort_level(m_tc->ensure_type(g_type).first);
cases_on = mk_constant({const_name(I), "cases_on"}, cons(g_lvl, const_levels(I)));
} else {
cases_on = mk_constant({const_name(I), "cases_on"}, const_levels(I));
}
// add params
cases_on = mk_app(cases_on, m_nparams, I_args.data());
// add type former
expr type_former = g_type;
if (m_dep_elim)
type_former = Fun(h, type_former);
type_former = Fun(m_nindices, I_args.end() - m_nindices, type_former);
cases_on = mk_app(cases_on, type_former);
// add indices
cases_on = mk_app(cases_on, m_nindices, I_args.end() - m_nindices);
// add h
cases_on = mk_app(cases_on, h);
buffer<expr> new_hyps;
new_hyps.append(hyps.size() - m_nindices - 1, hyps.data());
// add a subgoal for each minor premise of cases_on
expr cases_on_type = m_tc->whnf(m_tc->infer(cases_on).first).first;
buffer<goal> new_goals;
for (unsigned i = 0; i < m_nminors; i++) {
expr new_type = binding_domain(cases_on_type);
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(new_hyps, new_type)), new_hyps);
goal new_g(new_meta, new_type);
new_goals.push_back(new_g);
cases_on = mk_app(cases_on, new_meta);
cases_on_type = m_tc->whnf(binding_body(cases_on_type)).first; // the minor premises do not depend on each other
}
expr val = g.abstract(cases_on);
m_subst.assign(g.get_name(), val);
return to_list(new_goals.begin(), new_goals.end());
}
// Store in \c r the number of arguments for each cases_on minor.
void get_minors_nargs(buffer<unsigned> & r) {
expr cases_on_type = m_cases_on_decl.get_type();
for (unsigned i = 0; i < m_nparams + 1 + m_nindices + 1; i++)
cases_on_type = binding_body(cases_on_type);
for (unsigned i = 0; i < m_nminors; i++) {
expr minor_type = binding_domain(cases_on_type);
unsigned nargs = 0;
while (is_pi(minor_type)) {
nargs++;
minor_type = binding_body(minor_type);
}
r.push_back(nargs);
cases_on_type = binding_body(cases_on_type);
}
}
list<goal> intros_minors_args(list<goal> gs) {
buffer<unsigned> minors_nargs;
get_minors_nargs(minors_nargs);
lean_assert(length(gs) == minors_nargs.size());
buffer<goal> new_gs;
for (unsigned i = 0; i < minors_nargs.size(); i++) {
goal const & g = head(gs);
unsigned nargs = minors_nargs[i];
buffer<expr> hyps;
g.get_hyps(hyps);
buffer<expr> new_hyps;
new_hyps.append(hyps);
expr g_type = g.get_type();
for (unsigned i = 0; i < nargs; i++) {
expr type = binding_domain(g_type);
expr new_h = mk_local(m_ngen.next(), get_unused_name(binding_name(g_type), new_hyps), type, binder_info());
new_hyps.push_back(new_h);
g_type = instantiate(binding_body(g_type), new_h);
}
g_type = head_beta_reduce(g_type);
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(new_hyps, g_type)), new_hyps);
goal new_g(new_meta, g_type);
new_gs.push_back(new_g);
expr val = g.abstract(Fun(nargs, new_hyps.end() - nargs, new_meta));
m_subst.assign(g.get_name(), val);
gs = tail(gs);
}
return to_list(new_gs.begin(), new_gs.end());
}
struct inversion_exception : public exception {
inversion_exception(char const * msg):exception(msg) {}
inversion_exception(sstream const & strm):exception(strm) {}
};
[[ noreturn ]] void throw_ill_formed_goal() {
throw inversion_exception("ill-formed goal");
}
[[ noreturn ]] void throw_ill_typed_goal() {
throw inversion_exception("ill-typed goal");
}
goal intro_next_eq(goal const & g) {
expr const & type = g.get_type();
if (!is_pi(type))
throw_ill_formed_goal();
expr eq = binding_domain(type);
expr const & eq_fn = get_app_fn(eq);
if (!is_constant(eq_fn))
throw_ill_formed_goal();
buffer<expr> hyps;
g.get_hyps(hyps);
if (const_name(eq_fn) == "eq") {
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
expr new_type = instantiate(binding_body(type), new_hyp);
hyps.push_back(new_hyp);
expr new_meta = mk_app(mk_metavar(m_ngen.next(), Pi(hyps, new_type)), hyps);
goal new_g(new_meta, new_type);
expr val = g.abstract(Fun(new_hyp, new_meta));
m_subst.assign(g.get_name(), val);
return new_g;
} else if (const_name(eq_fn) == "heq") {
buffer<expr> args;
expr const & heq_fn = get_app_args(eq, args);
constraint_seq cs;
if (m_tc->is_def_eq(args[0], args[2], justification(), cs) && !cs) {
expr new_eq = mk_app(mk_constant("eq", const_levels(heq_fn)), args[0], args[1], args[3]);
expr new_hyp = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), new_eq, binder_info());
expr new_type = instantiate(binding_body(type), new_hyp);
hyps.push_back(new_hyp);
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
expr new_meta = mk_app(new_mvar, hyps);
goal new_g(new_meta, new_type);
hyps.pop_back();
expr H = mk_local(m_ngen.next(), g.get_unused_name(binding_name(type)), binding_domain(type), binder_info());
expr to_eq = mk_app(mk_constant({"heq", "to_eq"}, const_levels(heq_fn)), args[0], args[1], args[3], H);
expr val = g.abstract(Fun(H, mk_app(mk_app(new_mvar, hyps), to_eq)));
m_subst.assign(g.get_name(), val);
return new_g;
} else {
throw inversion_exception("unification failed to reduce heterogeneous equality into homogeneous one");
}
} else {
throw_ill_formed_goal();
}
}
goal clear_eq(goal g) {
// TODO(Leo): delete last hypothesis
return g;
}
// Split hyps into two "telescopes".
// - non_deps : hypotheses that do not depend on rhs
// - deps : hypotheses that depend on rhs (directly or indirectly)
void split_deps(buffer<expr> const & hyps, expr const & rhs, buffer<expr> & non_deps, buffer<expr> & deps) {
for (expr const & hyp : hyps) {
expr const & hyp_type = mlocal_type(hyp);
if (depends_on(hyp_type, rhs) || std::any_of(deps.begin(), deps.end(), [&](expr const & dep) { return depends_on(hyp_type, dep); })) {
deps.push_back(hyp);
} else {
non_deps.push_back(hyp);
}
}
}
optional<goal> unify_eqs(goal g, unsigned neqs) {
if (neqs == 0)
return optional<goal>(g); // done
g = intro_next_eq(g);
buffer<expr> hyps;
g.get_hyps(hyps);
lean_assert(!hyps.empty());
expr const & eq = hyps.back();
buffer<expr> eq_args;
get_app_args(mlocal_type(eq), eq_args);
expr const & A = m_tc->whnf(eq_args[0]).first;
expr lhs = m_tc->whnf(eq_args[1]).first;
expr rhs = m_tc->whnf(eq_args[2]).first;
constraint_seq cs;
if (m_tc->is_def_eq(lhs, rhs, justification(), cs) && !cs) {
// deletion transition: t == t
return unify_eqs(clear_eq(g), neqs-1);
}
buffer<expr> lhs_args, rhs_args;
expr const & lhs_fn = get_app_args(lhs, lhs_args);
expr const & rhs_fn = get_app_args(rhs, rhs_args);
expr const & g_type = g.get_type();
level const & g_lvl = sort_level(m_tc->ensure_type(g_type).first);
if (is_constant(lhs_fn) &&
is_constant(rhs_fn) &&
inductive::is_intro_rule(m_env, const_name(lhs_fn)) &&
inductive::is_intro_rule(m_env, const_name(rhs_fn))) {
buffer<expr> A_args;
expr const & A_fn = get_app_args(A, A_args);
if (!is_constant(A_fn) || !inductive::is_inductive_decl(m_env, const_name(A_fn)))
throw_ill_typed_goal();
name no_confusion_name(const_name(A_fn), "no_confusion");
if (!m_env.find(no_confusion_name))
throw inversion_exception(sstream() << "construction '" << no_confusion_name << "' is not available in the environment");
expr no_confusion = mk_app(mk_app(mk_constant(no_confusion_name, cons(g_lvl, const_levels(A_fn))), A_args), g_type, lhs, rhs, eq);
if (const_name(lhs_fn) == const_name(rhs_fn)) {
// injectivity transition
expr new_type = binding_domain(m_tc->whnf(m_tc->infer(no_confusion).first).first);
hyps.pop_back(); // remove processed equality
expr new_mvar = mk_metavar(m_ngen.next(), Pi(hyps, new_type));
expr new_meta = mk_app(new_mvar, hyps);
goal new_g(new_meta, new_type);
expr val = g.abstract(mk_app(no_confusion, new_meta));
m_subst.assign(g.get_name(), val);
unsigned A_nparams = *inductive::get_num_params(m_env, const_name(A_fn));
lean_assert(lhs_args.size() >= A_nparams);
return unify_eqs(new_g, neqs - 1 + lhs_args.size() - A_nparams);
} else {
// conflict transition, eq is of the form c_1 ... = c_2 ..., where c_1 and c_2 are different constructors/intro rules.
expr val = g.abstract(no_confusion);
m_subst.assign(g.get_name(), val);
return optional<goal>(); // goal has been solved
}
}
if (is_local(rhs)) {
// solution transition, eq is of the form t = y, where y is a local constant
// assume the current goal is of the form
//
// non_deps, deps[rhs], H : lhs = rhs |- C[rhs]
//
// We use non_deps to denote hypotheses that do not depend on rhs,
// and deps[rhs] to denote hypotheses that depend on it.
//
// The resultant goal is of the form
//
// non_deps, deps[lhs] |- C[lhs]
//
// Now, assume ?m1 is a solution for the resultant goal.
// Then,
//
// @eq.rec A lhs (fun rhs, Pi(deps[rhs], C[rhs])) (?m1 non_deps) rhs H deps[rhs]
//
// is a solution for the original goal.
// Remark: A is the type of lhs and rhs
hyps.pop_back(); // remove processed equality
buffer<expr> non_deps, deps;
split_deps(hyps, rhs, non_deps, deps);
expr deps_g_type = Pi(deps, g_type);
level eq_rec_lvl1 = sort_level(m_tc->ensure_type(deps_g_type).first);
level eq_rec_lvl2 = sort_level(m_tc->ensure_type(A).first);
expr tformer = Fun(rhs, deps_g_type);
expr eq_rec = mk_constant(name{"eq", "rec"}, {eq_rec_lvl1, eq_rec_lvl2});
eq_rec = mk_app(eq_rec, A, lhs, tformer);
buffer<expr> new_hyps;
new_hyps.append(non_deps);
expr new_type = instantiate(abstract(deps_g_type, rhs), lhs);
for (unsigned i = 0; i < deps.size(); i++) {
expr new_hyp = mk_local(m_ngen.next(), binding_name(new_type), binding_domain(new_type), binding_info(new_type));
new_hyps.push_back(new_hyp);
new_type = instantiate(binding_body(new_type), new_hyp);
}
expr new_mvar = mk_metavar(m_ngen.next(), Pi(new_hyps, new_type));
expr new_meta = mk_app(new_mvar, new_hyps);
goal new_g(new_meta, new_type);
expr eq_rec_minor = mk_app(new_mvar, non_deps);
eq_rec = mk_app(eq_rec, eq_rec_minor, rhs, eq);
expr val = g.abstract(mk_app(eq_rec, deps));
m_subst.assign(g.get_name(), val);
return unify_eqs(new_g, neqs-1);
}
// unification failed
return optional<goal>(g);
}
list<goal> unify_eqs(list<goal> const & gs) {
unsigned neqs = m_nindices + (m_dep_elim ? 1 : 0);
buffer<goal> new_goals;
for (goal const & g : gs) {
if (optional<goal> new_g = unify_eqs(g, neqs))
new_goals.push_back(*new_g);
}
return to_list(new_goals.begin(), new_goals.end());
}
public:
inversion_tac(environment const & env, io_state const & ios, proof_state const & ps):
m_env(env), m_ios(ios), m_ps(ps),
m_ngen(m_ps.get_ngen()),
m_tc(mk_type_checker(m_env, m_ngen.mk_child(), m_ps.relax_main_opaque())) {
}
optional<proof_state> execute(name const & n) {
try {
goals const & gs = m_ps.get_goals();
if (empty(gs))
return none_proof_state();
goal g = head(gs);
goals tail_gs = tail(gs);
auto p = g.find_hyp(n);
if (!p)
return none_proof_state();
expr const & h = p->first;
expr h_type = m_tc->whnf(mlocal_type(h)).first;
if (!is_inversion_applicable(h_type))
return none_proof_state();
goal g1 = generalize_indices(g, h, h_type);
list<goal> gs2 = apply_cases_on(g1);
list<goal> gs3 = intros_minors_args(gs2);
list<goal> gs4 = unify_eqs(gs3);
proof_state new_s(m_ps, append(gs4, tail_gs), m_subst, m_ngen);
return some_proof_state(new_s);
} catch (inversion_exception & ex) {
return none_proof_state();
}
}
};
tactic inversion_tactic(name const & n) {
auto fn = [=](environment const & env, io_state const & ios, proof_state const & ps) -> optional<proof_state> {
inversion_tac tac(env, ios, ps);
return tac.execute(n);
};
return tactic01(fn);
}
void initialize_inversion_tactic() {
register_tac(name({"tactic", "inversion"}),
[](type_checker &, elaborate_fn const &, expr const & e, pos_info_provider const *) {
name n = tactic_expr_to_id(app_arg(e), "invalid 'inversion' tactic, argument must be an identifier");
return inversion_tactic(n);
});
}
void finalize_inversion_tactic() {}
}