lean2/tests/lean/tst6.lean

59 lines
2.2 KiB
Text
Raw Normal View History

variable N : Type
variable h : N -> N -> N
theorem congrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
congr (congr (refl h) H1) H2
-- Display the theorem showing implicit arguments
set::option lean::pp::implicit true
print environment 2
-- Display the theorem hiding implicit arguments
set::option lean::pp::implicit false
print environment 2
theorem Example1 (a b c d : N) (H: (a = b ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
or::elim H
(fun H1 : a = b ∧ b = c,
congrH (trans (and::eliml H1) (and::elimr H1)) (refl b))
(fun H1 : a = d ∧ d = c,
congrH (trans (and::eliml H1) (and::elimr H1)) (refl b))
-- print proof of the last theorem with all implicit arguments
set::option lean::pp::implicit true
print environment 1
-- Using placeholders to hide the type of H1
theorem Example2 (a b c d : N) (H: (a = b ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
or::elim H
(fun H1 : _,
congrH (trans (and::eliml H1) (and::elimr H1)) (refl b))
(fun H1 : _,
congrH (trans (and::eliml H1) (and::elimr H1)) (refl b))
set::option lean::pp::implicit true
print environment 1
-- Same example but the first conjuct has unnecessary stuff
theorem Example3 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
or::elim H
(fun H1 : _,
congrH (trans (and::eliml H1) (and::elimr (and::elimr H1))) (refl b))
(fun H1 : _,
congrH (trans (and::eliml H1) (and::elimr H1)) (refl b))
set::option lean::pp::implicit false
print environment 1
theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) (a = d ∧ d = c)) : (h a c) = (h c a) :=
or::elim H
(fun H1 : _,
let AeqC := trans (and::eliml H1) (and::elimr (and::elimr H1))
in congrH AeqC (symm AeqC))
(fun H1 : _,
let AeqC := trans (and::eliml H1) (and::elimr H1)
in congrH AeqC (symm AeqC))
set::option lean::pp::implicit false
print environment 1