2014-08-24 19:58:48 -07:00
|
|
|
import logic
|
2014-10-01 17:51:17 -07:00
|
|
|
open eq.ops
|
2014-11-22 17:34:05 -08:00
|
|
|
namespace experiment
|
2014-07-26 10:36:21 -07:00
|
|
|
inductive nat : Type :=
|
2014-08-22 15:46:10 -07:00
|
|
|
zero : nat,
|
|
|
|
succ : nat → nat
|
2014-07-26 10:36:21 -07:00
|
|
|
|
2014-09-04 16:36:06 -07:00
|
|
|
namespace nat
|
2014-09-04 15:03:59 -07:00
|
|
|
definition add (x y : nat) : nat := nat.rec x (λn r, succ r) y
|
2014-10-21 15:27:45 -07:00
|
|
|
infixl `+` := add
|
2014-09-04 15:03:59 -07:00
|
|
|
definition mul (n m : nat) := nat.rec zero (fun m x, x + n) m
|
2014-10-21 15:27:45 -07:00
|
|
|
infixl `*` := mul
|
2014-07-26 10:36:21 -07:00
|
|
|
|
|
|
|
axiom mul_zero_right (n : nat) : n * zero = zero
|
|
|
|
|
2014-10-02 16:20:52 -07:00
|
|
|
constant P : nat → Prop
|
2014-07-26 10:36:21 -07:00
|
|
|
|
|
|
|
print "==========================="
|
|
|
|
theorem tst (n : nat) (H : P (n * zero)) : P zero
|
2014-09-04 18:41:06 -07:00
|
|
|
:= eq.subst (mul_zero_right _) H
|
2014-09-04 16:36:06 -07:00
|
|
|
end nat
|
2014-11-22 17:34:05 -08:00
|
|
|
exit
|