2014-12-11 23:14:53 -05:00
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
2014-12-12 14:19:06 -05:00
import types.sigma
2014-12-12 13:17:50 -05:00
open eq equiv is_equiv funext
2014-12-11 23:14:53 -05:00
namespace pi
universe variables l k
variables {A A' : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
/- Paths -/
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ∼ g].
This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
/- Now we show how these things compute. -/
definition apD10_path_pi [H : funext] (h : f ∼ g) : apD10 (path_pi h) ∼ h :=
apD10 (retr apD10 h)
2014-12-12 13:17:50 -05:00
definition path_pi_eta [H : funext] (p : f = g) : path_pi (apD10 p) = p :=
2014-12-11 23:14:53 -05:00
sect apD10 p
2014-12-12 13:17:50 -05:00
definition path_pi_idp [H : funext] : path_pi (λx : A, refl (f x)) = refl f :=
2014-12-11 23:14:53 -05:00
!path_pi_eta
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
2014-12-12 13:17:50 -05:00
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f = g) ≃ (f ∼ g) :=
2014-12-11 23:14:53 -05:00
equiv.mk _ !funext.ap
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
: is_equiv (@path_pi _ _ _ f g) :=
inv_closed apD10
2014-12-12 13:17:50 -05:00
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f ∼ g) ≃ (f = g) :=
2014-12-11 23:14:53 -05:00
equiv.mk _ !is_equiv_path_pi
/- Transport -/
2014-12-12 13:17:50 -05:00
protected definition transport (p : a = a') (f : Π(b : B a), C a b)
2014-12-11 23:14:53 -05:00
: (transport (λa, Π(b : B a), C a b) p f)
∼ (λb, transport (C a') !transport_pV (transportD _ _ p _ (f (p⁻¹ ▹ b)))) :=
2014-12-12 13:17:50 -05:00
eq.rec_on p (λx, idp)
2014-12-11 23:14:53 -05:00
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
2014-12-12 13:17:50 -05:00
definition transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b)
: (eq.transport (λa, Π(b : A'), C a b) p f) ∼ (λb, eq.transport (λa, C a b) p (f b)) :=
eq.rec_on p (λx, idp)
2014-12-11 23:14:53 -05:00
/- Maps on paths -/
/- The action of maps given by lambda. -/
2014-12-12 13:17:50 -05:00
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a = a') (f : Πa b, C b) :
ap (λa b, f a b) p = path_pi (λb, ap (λa, f a b) p) :=
2014-12-11 23:14:53 -05:00
begin
2014-12-12 13:17:50 -05:00
apply (eq.rec_on p),
2014-12-11 23:14:53 -05:00
apply inverse,
apply path_pi_idp
end
/- Dependent paths -/
/- with more implicit arguments the conclusion of the following theorem is
2014-12-12 13:17:50 -05:00
(Π(b : B a), transportD B C p b (f b) = g (eq.transport B p b)) ≃
(eq.transport (λa, Π(b : B a), C a b) p f = g) -/
definition dpath_pi [H : funext] (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
: (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) :=
eq.rec_on p (λg, !homotopy_equiv_path) g
2014-12-11 23:14:53 -05:00
2014-12-19 18:46:06 -08:00
section open sigma sigma.ops
2014-12-11 23:14:53 -05:00
/- more implicit arguments:
2014-12-12 13:17:50 -05:00
(Π(b : B a), eq.transport C (sigma.path p idp) (f b) = g (p ▹ b)) ≃
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (eq.transport B p b)) -/
definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
2014-12-11 23:14:53 -05:00
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
2014-12-12 13:17:50 -05:00
(Π(b : B a), (sigma.path p idp) ▹ (f b) = g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) = g (p ▹ b)) :=
eq.rec_on p (λg, !equiv.refl) g
2014-12-11 23:14:53 -05:00
end
/- truncation -/
open truncation
definition trunc_pi [instance] [H : funext.{l k}] (B : A → Type.{k}) (n : trunc_index)
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
begin
reverts (B, H),
apply (trunc_index.rec_on n),
intros (B, H),
fapply is_contr.mk,
intro a, apply center, apply H, --remove "apply H" when term synthesis works correctly
intro f, apply path_pi,
intro x, apply (contr (f x)),
intros (n, IH, B, H),
fapply is_trunc_succ, intros (f, g),
fapply trunc_equiv',
apply equiv.symm, apply path_equiv_homotopy,
apply IH,
intro a,
2014-12-12 13:17:50 -05:00
show is_trunc n (f a = g a), from
2014-12-11 23:14:53 -05:00
succ_is_trunc n (f a) (g a)
end
definition trunc_path_pi [instance] [H : funext.{l k}] (n : trunc_index) (f g : Πa, B a)
2014-12-12 13:17:50 -05:00
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
2014-12-11 23:14:53 -05:00
begin
apply trunc_equiv', apply equiv.symm,
apply path_equiv_homotopy,
apply trunc_pi, exact H,
end
end pi