2014-01-07 21:24:46 +00:00
|
|
|
|
Set: pp::colors
|
|
|
|
|
Set: pp::unicode
|
|
|
|
|
Imported 'macros'
|
|
|
|
|
Using: Nat
|
|
|
|
|
Assumed: Induction
|
|
|
|
|
Failed to solve
|
2014-01-16 00:35:33 +00:00
|
|
|
|
⊢ ∀ m : ℕ, 0 + m = m + 0 ≺ ?M::3 0
|
2014-01-09 20:15:12 +00:00
|
|
|
|
induction2.lean:10:3: Type of argument 2 must be convertible to the expected type in the application of
|
2014-01-08 08:38:39 +00:00
|
|
|
|
Induction
|
|
|
|
|
with arguments:
|
|
|
|
|
?M::3
|
2014-01-09 16:33:52 +00:00
|
|
|
|
λ m : ℕ, Nat::add_zerol m ⋈ symm (Nat::add_zeror m)
|
2014-01-18 23:37:36 +00:00
|
|
|
|
λ (n : ℕ) (iH : (?M::3[lift:0:1]) n) (m : ℕ),
|
2014-01-13 20:42:05 +00:00
|
|
|
|
@trans ℕ
|
|
|
|
|
(n + 1 + m)
|
|
|
|
|
(m + n + 1)
|
|
|
|
|
(m + (n + 1))
|
|
|
|
|
(@trans ℕ
|
|
|
|
|
(n + 1 + m)
|
|
|
|
|
(n + m + 1)
|
|
|
|
|
(m + n + 1)
|
|
|
|
|
(Nat::add_succl n m)
|
|
|
|
|
(@subst ?M::14
|
|
|
|
|
?M::15
|
|
|
|
|
?M::16
|
2014-01-16 00:35:33 +00:00
|
|
|
|
(λ x : ?M::14,
|
|
|
|
|
@eq ((?M::48[lift:0:1]) x) ((?M::49[lift:0:1]) x) ((?M::50[lift:0:1]) x))
|
2014-01-13 20:42:05 +00:00
|
|
|
|
(refl (n + m + 1))
|
|
|
|
|
iH))
|
|
|
|
|
(symm (Nat::add_succr m n))
|