lean2/library/data/nat/examples/fib.lean

53 lines
1.4 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.nat
open nat
definition fib : nat → nat
| 0 := 1
| 1 := 1
| (n+2) := fib (n+1) + fib n
private definition fib_fast_aux : nat → (nat × nat)
| 0 := (0, 1)
| 1 := (1, 1)
| (n+2) :=
match fib_fast_aux (n+1) with
| (fn, fn1) := (fn1, fn1 + fn)
end
open prod.ops -- Get .1 .2 notation for pairs
definition fib_fast (n : nat) := (fib_fast_aux n).2
-- We now prove that fib_fast and fib are equal
lemma fib_fast_aux_succ_succ : ∀ n, fib_fast_aux (succ (succ n)) = match fib_fast_aux (succ n) with | (fn, fn1) := (fn1, fn1 + fn) end :=
λ n, rfl
lemma fib_fast_aux_lemma : ∀ n, (fib_fast_aux (succ n)).1 = (fib_fast_aux n).2
| 0 := rfl
| 1 := rfl
| (succ (succ n)) :=
begin
rewrite [fib_fast_aux_succ_succ],
rewrite [-prod.eta (fib_fast_aux (succ (succ n)))],
end
theorem fib_eq_fib_fast : ∀ n, fib n = fib_fast n
| 0 := rfl
| 1 := rfl
| (n+2) :=
begin
have feq : fib n = fib_fast n, from fib_eq_fib_fast n,
have f1eq : fib (succ n) = fib_fast (succ n), from fib_eq_fib_fast (succ n),
unfold [fib, fib_fast, fib_fast_aux],
rewrite [-prod.eta (fib_fast_aux (succ n))], esimp,
fold fib_fast (succ n), rewrite -f1eq,
rewrite fib_fast_aux_lemma,
fold fib_fast n, rewrite -feq,
end