2015-04-04 04:20:19 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
2015-04-10 01:45:18 +00:00
|
|
|
Declaration of the pushout
|
2015-04-04 04:20:19 +00:00
|
|
|
-/
|
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
import .quotient cubical.square
|
2015-04-07 01:01:08 +00:00
|
|
|
|
2015-11-20 22:47:11 +00:00
|
|
|
open quotient eq sum equiv equiv.ops is_trunc
|
2015-04-04 04:20:19 +00:00
|
|
|
|
|
|
|
namespace pushout
|
2015-04-23 22:27:56 +00:00
|
|
|
section
|
2015-04-04 04:20:19 +00:00
|
|
|
|
2015-04-11 00:33:33 +00:00
|
|
|
parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|
|
|
|
|
|
|
local abbreviation A := BL + TR
|
|
|
|
inductive pushout_rel : A → A → Type :=
|
|
|
|
| Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x))
|
|
|
|
open pushout_rel
|
|
|
|
local abbreviation R := pushout_rel
|
|
|
|
|
2015-06-04 19:57:00 +00:00
|
|
|
definition pushout : Type := quotient R -- TODO: define this in root namespace
|
2015-04-04 04:20:19 +00:00
|
|
|
|
2015-09-22 16:01:55 +00:00
|
|
|
parameters {f g}
|
2015-04-10 01:45:18 +00:00
|
|
|
definition inl (x : BL) : pushout :=
|
2015-04-11 00:33:33 +00:00
|
|
|
class_of R (inl x)
|
2015-04-04 04:20:19 +00:00
|
|
|
|
|
|
|
definition inr (x : TR) : pushout :=
|
2015-04-11 00:33:33 +00:00
|
|
|
class_of R (inr x)
|
2015-04-04 04:20:19 +00:00
|
|
|
|
|
|
|
definition glue (x : TL) : inl (f x) = inr (g x) :=
|
2015-04-27 21:34:55 +00:00
|
|
|
eq_of_rel pushout_rel (Rmk f g x)
|
2015-04-04 04:20:19 +00:00
|
|
|
|
|
|
|
protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
2015-05-22 08:35:38 +00:00
|
|
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
|
2015-04-04 04:20:19 +00:00
|
|
|
(y : pushout) : P y :=
|
|
|
|
begin
|
2015-05-21 04:16:23 +00:00
|
|
|
induction y,
|
|
|
|
{ cases a,
|
|
|
|
apply Pinl,
|
|
|
|
apply Pinr},
|
|
|
|
{ cases H, apply Pglue}
|
2015-04-04 04:20:19 +00:00
|
|
|
end
|
|
|
|
|
2015-04-07 01:01:08 +00:00
|
|
|
protected definition rec_on [reducible] {P : pushout → Type} (y : pushout)
|
|
|
|
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x))
|
2015-05-22 08:35:38 +00:00
|
|
|
(Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y :=
|
2015-04-04 04:20:19 +00:00
|
|
|
rec Pinl Pinr Pglue y
|
|
|
|
|
2015-04-27 21:34:55 +00:00
|
|
|
theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x))
|
2015-05-22 08:35:38 +00:00
|
|
|
(Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x))
|
|
|
|
(x : TL) : apdo (rec Pinl Pinr Pglue) (glue x) = Pglue x :=
|
2015-04-28 01:30:20 +00:00
|
|
|
!rec_eq_of_rel
|
2015-04-19 21:56:24 +00:00
|
|
|
|
2015-04-07 01:01:08 +00:00
|
|
|
protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
|
|
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P :=
|
2015-05-22 08:35:38 +00:00
|
|
|
rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y
|
2015-04-07 01:01:08 +00:00
|
|
|
|
2015-04-19 21:56:24 +00:00
|
|
|
protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P)
|
2015-04-07 01:01:08 +00:00
|
|
|
(Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P :=
|
|
|
|
elim Pinl Pinr Pglue y
|
2015-04-04 04:20:19 +00:00
|
|
|
|
2015-04-27 21:34:55 +00:00
|
|
|
theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P)
|
|
|
|
(Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL)
|
2015-04-23 22:27:56 +00:00
|
|
|
: ap (elim Pinl Pinr Pglue) (glue x) = Pglue x :=
|
2015-04-27 21:34:55 +00:00
|
|
|
begin
|
2015-05-22 08:35:38 +00:00
|
|
|
apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)),
|
|
|
|
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue],
|
2015-04-27 21:34:55 +00:00
|
|
|
end
|
2015-04-04 04:20:19 +00:00
|
|
|
|
2015-04-19 21:56:24 +00:00
|
|
|
protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type)
|
|
|
|
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type :=
|
|
|
|
elim Pinl Pinr (λx, ua (Pglue x)) y
|
|
|
|
|
|
|
|
protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type)
|
|
|
|
(Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type :=
|
|
|
|
elim_type Pinl Pinr Pglue y
|
|
|
|
|
2015-04-27 21:34:55 +00:00
|
|
|
theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type)
|
2015-05-26 13:56:41 +00:00
|
|
|
(Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL)
|
2015-04-27 21:34:55 +00:00
|
|
|
: transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x :=
|
|
|
|
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn
|
2015-04-04 04:20:19 +00:00
|
|
|
|
2015-11-20 22:47:11 +00:00
|
|
|
protected definition rec_hprop {P : pushout → Type} [H : Πx, is_hprop (P x)]
|
|
|
|
(Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) :=
|
|
|
|
rec Pinl Pinr (λx, !is_hprop.elimo) y
|
|
|
|
|
|
|
|
protected definition elim_hprop {P : Type} [H : is_hprop P] (Pinl : BL → P) (Pinr : TR → P)
|
|
|
|
(y : pushout) : P :=
|
|
|
|
elim Pinl Pinr (λa, !is_hprop.elim) y
|
|
|
|
|
2015-04-07 01:01:08 +00:00
|
|
|
end
|
|
|
|
end pushout
|
2015-05-07 20:35:14 +00:00
|
|
|
|
|
|
|
attribute pushout.inl pushout.inr [constructor]
|
2015-07-07 23:37:06 +00:00
|
|
|
attribute pushout.rec pushout.elim [unfold 10] [recursor 10]
|
|
|
|
attribute pushout.elim_type [unfold 9]
|
|
|
|
attribute pushout.rec_on pushout.elim_on [unfold 7]
|
|
|
|
attribute pushout.elim_type_on [unfold 6]
|
2015-09-22 16:01:55 +00:00
|
|
|
|
|
|
|
open sigma
|
|
|
|
|
|
|
|
namespace pushout
|
|
|
|
|
|
|
|
variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR)
|
|
|
|
|
|
|
|
/- The non-dependent universal property -/
|
|
|
|
definition pushout_arrow_equiv (C : Type)
|
|
|
|
: (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) :=
|
|
|
|
begin
|
|
|
|
fapply equiv.MK,
|
|
|
|
{ intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩},
|
|
|
|
{ intro v x, induction v with i w, induction w with j p, induction x,
|
|
|
|
exact (i a), exact (j a), exact (p x)},
|
|
|
|
{ intro v, induction v with i w, induction w with j p, esimp,
|
|
|
|
apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue},
|
|
|
|
{ intro f, apply eq_of_homotopy, intro x, induction x: esimp,
|
|
|
|
apply eq_pathover, apply hdeg_square, esimp, apply elim_glue},
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
end pushout
|