2014-09-05 16:44:33 +00:00
|
|
|
|
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
-- Author: Floris van Doorn
|
|
|
|
|
|
|
|
|
|
-- category
|
|
|
|
|
import logic.core.eq logic.core.connectives
|
|
|
|
|
import data.unit data.sigma data.prod
|
2014-09-16 18:58:54 +00:00
|
|
|
|
import algebra.function
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
import logic.axioms.funext
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
open eq eq_ops
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
|
|
|
|
inductive category [class] (ob : Type) : Type :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
mk : Π (mor : ob → ob → Type) (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C)
|
2014-09-05 16:44:33 +00:00
|
|
|
|
(id : Π {A : ob}, mor A A),
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(Π ⦃A B C D : ob⦄ {h : mor C D} {g : mor B C} {f : mor A B},
|
2014-09-05 16:44:33 +00:00
|
|
|
|
comp h (comp g f) = comp (comp h g) f) →
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(Π ⦃A B : ob⦄ {f : mor A B}, comp id f = f) →
|
|
|
|
|
(Π ⦃A B : ob⦄ {f : mor A B}, comp f id = f) →
|
2014-09-11 23:13:28 +00:00
|
|
|
|
category ob
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
inductive Category : Type :=
|
|
|
|
|
mk : Π (A : Type), category A → Category
|
|
|
|
|
|
2014-09-05 16:44:33 +00:00
|
|
|
|
namespace category
|
|
|
|
|
|
|
|
|
|
section
|
2014-09-11 23:13:28 +00:00
|
|
|
|
parameters {ob : Type} {Cat : category ob} {A B C D : ob}
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-17 21:39:05 +00:00
|
|
|
|
definition mor : ob → ob → Type := rec (λ mor compose id assoc idr idl, mor) Cat
|
|
|
|
|
definition compose : Π {A B C : ob}, mor B C → mor A B → mor A C :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ mor compose id assoc idr idl, compose) Cat
|
2014-09-12 16:28:33 +00:00
|
|
|
|
|
2014-09-17 21:39:05 +00:00
|
|
|
|
definition id : Π {A : ob}, mor A A :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ mor compose id assoc idr idl, id) Cat
|
2014-09-17 21:39:05 +00:00
|
|
|
|
definition ID (A : ob) : mor A A := @id A
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
precedence `∘` : 60
|
2014-09-11 23:13:28 +00:00
|
|
|
|
infixr `∘` := compose
|
2014-09-26 23:36:04 +00:00
|
|
|
|
infixl `=>`:25 := mor
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
theorem assoc : Π {A B C D : ob} {h : mor C D} {g : mor B C} {f : mor A B},
|
2014-09-05 16:44:33 +00:00
|
|
|
|
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ mor comp id assoc idr idl, assoc) Cat
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
|
|
|
|
theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
rec (λ mor comp id assoc idl idr, idl) Cat
|
|
|
|
|
theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f :=
|
|
|
|
|
rec (λ mor comp id assoc idl idr, idr) Cat
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
2014-09-11 23:58:32 +00:00
|
|
|
|
theorem id_compose {A : ob} : (ID A) ∘ id = id :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
id_left
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem left_id_unique (i : mor A A) (H : Π{B} {f : mor B A}, i ∘ f = f) : i = id :=
|
2014-09-05 16:44:33 +00:00
|
|
|
|
calc
|
2014-09-26 23:36:04 +00:00
|
|
|
|
i = i ∘ id : symm id_right
|
2014-09-05 16:44:33 +00:00
|
|
|
|
... = id : H
|
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem right_id_unique (i : mor A A) (H : Π{B} {f : mor A B}, f ∘ i = f) : i = id :=
|
2014-09-05 16:44:33 +00:00
|
|
|
|
calc
|
|
|
|
|
i = id ∘ i : eq.symm id_left
|
|
|
|
|
... = id : H
|
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
inductive is_section {A B : ob} (f : mor A B) : Type :=
|
|
|
|
|
mk : ∀{g}, g ∘ f = id → is_section f
|
|
|
|
|
inductive is_retraction {A B : ob} (f : mor A B) : Type :=
|
|
|
|
|
mk : ∀{g}, f ∘ g = id → is_retraction f
|
|
|
|
|
inductive is_iso {A B : ob} (f : mor A B) : Type :=
|
|
|
|
|
mk : ∀{g}, g ∘ f = id → f ∘ g = id → is_iso f
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
definition retraction_of {A B : ob} (f : mor A B) {H : is_section f} : mor B A :=
|
|
|
|
|
is_section.rec (λg h, g) H
|
|
|
|
|
definition section_of {A B : ob} (f : mor A B) {H : is_retraction f} : mor B A :=
|
|
|
|
|
is_retraction.rec (λg h, g) H
|
|
|
|
|
definition inverse {A B : ob} (f : mor A B) {H : is_iso f} : mor B A :=
|
|
|
|
|
is_iso.rec (λg h1 h2, g) H
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
postfix `⁻¹` := inverse
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem id_is_iso [instance] : is_iso (ID A) :=
|
|
|
|
|
is_iso.mk id_compose id_compose
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem inverse_compose {A B : ob} {f : mor A B} {H : is_iso f} : f⁻¹ ∘ f = id :=
|
|
|
|
|
is_iso.rec (λg h1 h2, h1) H
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem compose_inverse {A B : ob} {f : mor A B} {H : is_iso f} : f ∘ f⁻¹ = id :=
|
|
|
|
|
is_iso.rec (λg h1 h2, h2) H
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem iso_imp_retraction [instance] {A B : ob} (f : mor A B) {H : is_iso f} : is_section f :=
|
|
|
|
|
is_section.mk inverse_compose
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem iso_imp_section [instance] {A B : ob} (f : mor A B) {H : is_iso f} : is_retraction f :=
|
|
|
|
|
is_retraction.mk compose_inverse
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem retraction_compose {A B : ob} {f : mor A B} {H : is_section f} :
|
|
|
|
|
retraction_of f ∘ f = id :=
|
|
|
|
|
is_section.rec (λg h, h) H
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem compose_section {A B : ob} {f : mor A B} {H : is_retraction f} :
|
|
|
|
|
f ∘ section_of f = id :=
|
|
|
|
|
is_retraction.rec (λg h, h) H
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem left_inverse_eq_right_inverse {A B : ob} {f : mor A B} {g g' : mor B A}
|
|
|
|
|
(Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' :=
|
|
|
|
|
calc
|
|
|
|
|
g = g ∘ id : symm id_right
|
|
|
|
|
... = g ∘ f ∘ g' : {symm Hr}
|
|
|
|
|
... = (g ∘ f) ∘ g' : assoc
|
|
|
|
|
... = id ∘ g' : {Hl}
|
|
|
|
|
... = g' : id_left
|
|
|
|
|
|
|
|
|
|
theorem section_eq_retraction {A B : ob} {f : mor A B}
|
|
|
|
|
(Hl : is_section f) (Hr : is_retraction f) : retraction_of f = section_of f :=
|
|
|
|
|
left_inverse_eq_right_inverse retraction_compose compose_section
|
|
|
|
|
|
|
|
|
|
theorem section_retraction_imp_iso {A B : ob} {f : mor A B}
|
|
|
|
|
(Hl : is_section f) (Hr : is_retraction f) : is_iso f :=
|
|
|
|
|
is_iso.mk (subst (section_eq_retraction Hl Hr) retraction_compose) compose_section
|
|
|
|
|
|
2014-09-12 22:56:02 +00:00
|
|
|
|
theorem inverse_unique {A B : ob} {f : mor A B} (H H' : is_iso f)
|
|
|
|
|
: @inverse _ _ f H = @inverse _ _ f H' :=
|
|
|
|
|
left_inverse_eq_right_inverse inverse_compose compose_inverse
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
|
|
|
|
theorem retraction_of_id {A : ob} : retraction_of (ID A) = id :=
|
|
|
|
|
left_inverse_eq_right_inverse retraction_compose id_compose
|
|
|
|
|
|
|
|
|
|
theorem section_of_id {A : ob} : section_of (ID A) = id :=
|
|
|
|
|
symm (left_inverse_eq_right_inverse id_compose compose_section)
|
|
|
|
|
|
|
|
|
|
theorem iso_of_id {A : ob} : ID A⁻¹ = id :=
|
|
|
|
|
left_inverse_eq_right_inverse inverse_compose id_compose
|
|
|
|
|
|
2014-09-11 23:58:32 +00:00
|
|
|
|
theorem composition_is_section [instance] {f : mor A B} {g : mor B C}
|
2014-09-11 23:13:28 +00:00
|
|
|
|
(Hf : is_section f) (Hg : is_section g) : is_section (g ∘ f) :=
|
|
|
|
|
is_section.mk
|
|
|
|
|
(calc
|
2014-09-11 23:58:32 +00:00
|
|
|
|
(retraction_of f ∘ retraction_of g) ∘ g ∘ f
|
2014-09-11 23:13:28 +00:00
|
|
|
|
= retraction_of f ∘ retraction_of g ∘ g ∘ f : symm assoc
|
|
|
|
|
... = retraction_of f ∘ (retraction_of g ∘ g) ∘ f : {assoc}
|
|
|
|
|
... = retraction_of f ∘ id ∘ f : {retraction_compose}
|
|
|
|
|
... = retraction_of f ∘ f : {id_left}
|
|
|
|
|
... = id : retraction_compose)
|
|
|
|
|
|
2014-09-11 23:58:32 +00:00
|
|
|
|
theorem composition_is_retraction [instance] {f : mor A B} {g : mor B C}
|
2014-09-11 23:13:28 +00:00
|
|
|
|
(Hf : is_retraction f) (Hg : is_retraction g) : is_retraction (g ∘ f) :=
|
|
|
|
|
is_retraction.mk
|
|
|
|
|
(calc
|
|
|
|
|
(g ∘ f) ∘ section_of f ∘ section_of g = g ∘ f ∘ section_of f ∘ section_of g : symm assoc
|
|
|
|
|
... = g ∘ (f ∘ section_of f) ∘ section_of g : {assoc}
|
|
|
|
|
... = g ∘ id ∘ section_of g : {compose_section}
|
|
|
|
|
... = g ∘ section_of g : {id_left}
|
|
|
|
|
... = id : compose_section)
|
|
|
|
|
|
2014-09-11 23:58:32 +00:00
|
|
|
|
theorem composition_is_inverse [instance] {f : mor A B} {g : mor B C}
|
2014-09-11 23:13:28 +00:00
|
|
|
|
(Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) :=
|
|
|
|
|
section_retraction_imp_iso _ _
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
|
|
|
|
definition mono {A B : ob} (f : mor A B) : Prop :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
∀⦃C⦄ {g h : mor C A}, f ∘ g = f ∘ h → g = h
|
2014-09-05 16:44:33 +00:00
|
|
|
|
definition epi {A B : ob} (f : mor A B) : Prop :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
∀⦃C⦄ {g h : mor B C}, g ∘ f = h ∘ f → g = h
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
theorem section_is_mono {f : mor A B} (H : is_section f) : mono f :=
|
2014-09-11 23:58:32 +00:00
|
|
|
|
λ C g h H,
|
2014-09-11 23:13:28 +00:00
|
|
|
|
calc
|
|
|
|
|
g = id ∘ g : symm id_left
|
|
|
|
|
... = (retraction_of f ∘ f) ∘ g : {symm retraction_compose}
|
|
|
|
|
... = retraction_of f ∘ f ∘ g : symm assoc
|
|
|
|
|
... = retraction_of f ∘ f ∘ h : {H}
|
|
|
|
|
... = (retraction_of f ∘ f) ∘ h : assoc
|
|
|
|
|
... = id ∘ h : {retraction_compose}
|
|
|
|
|
... = h : id_left
|
|
|
|
|
|
|
|
|
|
theorem retraction_is_epi {f : mor A B} (H : is_retraction f) : epi f :=
|
2014-09-11 23:58:32 +00:00
|
|
|
|
λ C g h H,
|
2014-09-11 23:13:28 +00:00
|
|
|
|
calc
|
|
|
|
|
g = g ∘ id : symm id_right
|
|
|
|
|
... = g ∘ f ∘ section_of f : {symm compose_section}
|
|
|
|
|
... = (g ∘ f) ∘ section_of f : assoc
|
|
|
|
|
... = (h ∘ f) ∘ section_of f : {H}
|
|
|
|
|
... = h ∘ f ∘ section_of f : symm assoc
|
|
|
|
|
... = h ∘ id : {compose_section}
|
|
|
|
|
... = h : id_right
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
|
|
|
|
end
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
|
|
|
|
|
definition objects [coercion] (C : Category) : Type
|
|
|
|
|
:= Category.rec (fun c s, c) C
|
|
|
|
|
|
|
|
|
|
definition category_instance [instance] (C : Category) : category (objects C)
|
|
|
|
|
:= Category.rec (fun c s, s) C
|
|
|
|
|
|
|
|
|
|
end
|
2014-09-05 16:44:33 +00:00
|
|
|
|
|
|
|
|
|
end category
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
|
|
|
|
open category
|
|
|
|
|
|
|
|
|
|
inductive functor {obC obD : Type} (C : category obC) (D : category obD) : Type :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
mk : Π (obF : obC → obD) (morF : Π⦃A B : obC⦄, mor A B → mor (obF A) (obF B)),
|
|
|
|
|
(Π ⦃A : obC⦄, morF (ID A) = ID (obF A)) →
|
|
|
|
|
(Π ⦃A B C : obC⦄ {f : mor A B} {g : mor B C}, morF (g ∘ f) = morF g ∘ morF f) →
|
|
|
|
|
functor C D
|
|
|
|
|
|
|
|
|
|
inductive Functor (C D : Category) : Type :=
|
|
|
|
|
mk : functor (category_instance C) (category_instance D) → Functor C D
|
2014-09-11 23:13:28 +00:00
|
|
|
|
|
2014-09-16 21:00:12 +00:00
|
|
|
|
infixl `⇒`:25 := functor
|
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
namespace functor
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
section basic_functor
|
2014-09-16 21:00:12 +00:00
|
|
|
|
parameters {obC obD : Type} {C : category obC} {D : category obD}
|
|
|
|
|
definition object [coercion] (F : C ⇒ D) : obC → obD := rec (λ obF morF Hid Hcomp, obF) F
|
|
|
|
|
|
|
|
|
|
definition morphism [coercion] (F : C ⇒ D) : Π{A B : obC}, mor A B → mor (F A) (F B) :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ obF morF Hid Hcomp, morF) F
|
2014-09-16 21:00:12 +00:00
|
|
|
|
|
|
|
|
|
theorem respect_id (F : C ⇒ D) : Π {A : obC}, F (ID A) = ID (F A) :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ obF morF Hid Hcomp, Hid) F
|
2014-09-16 21:00:12 +00:00
|
|
|
|
|
|
|
|
|
theorem respect_comp (F : C ⇒ D) : Π {a b c : obC} {f : mor a b} {g : mor b c},
|
|
|
|
|
F (g ∘ f) = F g ∘ F f :=
|
2014-09-11 23:13:28 +00:00
|
|
|
|
rec (λ obF morF Hid Hcomp, Hcomp) F
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
end basic_functor
|
|
|
|
|
|
|
|
|
|
section category_functor
|
2014-09-16 21:00:12 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected definition compose {obC obD obE : Type} {C : category obC} {D : category obD} {E : category obE}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(G : D ⇒ E) (F : C ⇒ D) : C ⇒ E :=
|
2014-09-16 21:00:12 +00:00
|
|
|
|
functor.mk C E
|
|
|
|
|
(λx, G (F x))
|
|
|
|
|
(λ a b f, G (F f))
|
|
|
|
|
(λ a, calc
|
|
|
|
|
G (F (ID a)) = G id : {respect_id F}
|
|
|
|
|
... = id : respect_id G)
|
|
|
|
|
(λ a b c f g, calc
|
|
|
|
|
G (F (g ∘ f)) = G (F g ∘ F f) : {respect_comp F}
|
|
|
|
|
... = G (F g) ∘ G (F f) : respect_comp G)
|
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
precedence `∘∘` : 60
|
|
|
|
|
infixr `∘∘` := compose
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected theorem assoc {obA obB obC obD : Type} {A : category obA} {B : category obB}
|
|
|
|
|
{C : category obC} {D : category obD} {H : C ⇒ D} {G : B ⇒ C} {F : A ⇒ B} :
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F :=
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
-- later check whether we want implicit or explicit arguments here. For the moment, define both
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected definition id {ob : Type} {C : category ob} : functor C C :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
mk C C (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl)
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected definition ID {ob : Type} (C : category ob) : functor C C := id
|
|
|
|
|
protected definition Id {C : Category} : Functor C C := Functor.mk id
|
|
|
|
|
protected definition iD (C : Category) : Functor C C := Functor.mk id
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected theorem id_left {obC obB : Type} {B : category obB} {C : category obC} {F : B ⇒ C}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
: id ∘∘ F = F :=
|
|
|
|
|
rec (λ obF morF idF compF, rfl) F
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected theorem id_right {obC obB : Type} {B : category obB} {C : category obC} {F : B ⇒ C}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
: F ∘∘ id = F :=
|
|
|
|
|
rec (λ obF morF idF compF, rfl) F
|
|
|
|
|
|
|
|
|
|
end category_functor
|
|
|
|
|
|
|
|
|
|
section Functor
|
|
|
|
|
-- parameters {C D E : Category} (G : Functor D E) (F : Functor C D)
|
|
|
|
|
definition Functor_functor {C D : Category} (F : Functor C D) : functor (category_instance C) (category_instance D) :=
|
|
|
|
|
Functor.rec (λ x, x) F
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected definition Compose {C D E : Category} (G : Functor D E) (F : Functor C D) : Functor C E :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
Functor.mk (compose (Functor_functor G) (Functor_functor F))
|
|
|
|
|
|
|
|
|
|
-- namespace Functor
|
|
|
|
|
precedence `∘∘` : 60
|
|
|
|
|
infixr `∘∘` := Compose
|
|
|
|
|
-- end Functor
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected definition Assoc {A B C D : Category} {H : Functor C D} {G : Functor B C} {F : Functor A B}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
: H ∘∘ (G ∘∘ F) = (H ∘∘ G) ∘∘ F :=
|
|
|
|
|
rfl
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected theorem Id_left {B : Category} {C : Category} {F : Functor B C}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
: Id ∘∘ F = F :=
|
2014-09-26 23:36:04 +00:00
|
|
|
|
Functor.rec (λ f, subst id_left rfl) F
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
protected theorem Id_right {B : Category} {C : Category} {F : Functor B C}
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
: F ∘∘ Id = F :=
|
2014-09-26 23:36:04 +00:00
|
|
|
|
Functor.rec (λ f, subst id_right rfl) F
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
|
|
|
|
end Functor
|
|
|
|
|
|
2014-09-11 23:13:28 +00:00
|
|
|
|
end functor
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
|
|
|
|
open functor
|
|
|
|
|
|
|
|
|
|
inductive natural_transformation {obC obD : Type} {C : category obC} {D : category obD}
|
|
|
|
|
(F G : functor C D) : Type :=
|
2014-09-26 23:36:04 +00:00
|
|
|
|
mk : Π (η : Π(a : obC), mor (object F a) (object G a)), (Π{a b : obC} (f : mor a b), morphism G f ∘ η a = η b ∘ morphism F f)
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
→ natural_transformation F G
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
-- inductive Natural_transformation {C D : Category} (F G : Functor C D) : Type :=
|
|
|
|
|
-- mk : natural_transformation (Functor_functor F) (Functor_functor G) → Natural_transformation F G
|
|
|
|
|
|
|
|
|
|
infixl `==>`:25 := natural_transformation
|
|
|
|
|
|
|
|
|
|
namespace natural_transformation
|
|
|
|
|
section
|
|
|
|
|
parameters {obC obD : Type} {C : category obC} {D : category obD} {F G : C ⇒ D}
|
|
|
|
|
|
|
|
|
|
definition natural_map [coercion] (η : F ==> G) :
|
|
|
|
|
Π(a : obC), mor (object F a) (object G a) :=
|
|
|
|
|
rec (λ x y, x) η
|
|
|
|
|
|
|
|
|
|
definition naturality (η : F ==> G) :
|
|
|
|
|
Π{a b : obC} (f : mor a b), morphism G f ∘ η a = η b ∘ morphism F f :=
|
|
|
|
|
rec (λ x y, y) η
|
|
|
|
|
end
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
section
|
|
|
|
|
parameters {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
|
|
|
|
|
protected definition compose (η : G ==> H) (θ : F ==> G) : F ==> H :=
|
|
|
|
|
natural_transformation.mk
|
|
|
|
|
(λ a, η a ∘ θ a)
|
|
|
|
|
(λ a b f,
|
|
|
|
|
calc
|
|
|
|
|
morphism H f ∘ (η a ∘ θ a) = (morphism H f ∘ η a) ∘ θ a : assoc
|
|
|
|
|
... = (η b ∘ morphism G f) ∘ θ a : {naturality η f}
|
|
|
|
|
... = η b ∘ (morphism G f ∘ θ a) : symm assoc
|
|
|
|
|
... = η b ∘ (θ b ∘ morphism F f) : {naturality θ f}
|
|
|
|
|
... = (η b ∘ θ b) ∘ morphism F f : assoc)
|
|
|
|
|
end
|
|
|
|
|
precedence `∘n` : 60
|
|
|
|
|
infixr `∘n` := compose
|
|
|
|
|
section
|
|
|
|
|
protected theorem assoc {obC obD : Type} {C : category obC} {D : category obD} {F₄ F₃ F₂ F₁ : C ⇒ D} {η₃ : F₃ ==> F₄} {η₂ : F₂ ==> F₃} {η₁ : F₁ ==> F₂} : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
|
|
|
|
congr_arg2_dep mk (funext (take x, assoc)) proof_irrel
|
|
|
|
|
|
|
|
|
|
--TODO: check whether some of the below identities are superfluous
|
|
|
|
|
protected definition id {obC obD : Type} {C : category obC} {D : category obD} {F : C ⇒ D}
|
|
|
|
|
: natural_transformation F F :=
|
|
|
|
|
mk (λa, id) (λa b f, id_right ⬝ symm id_left)
|
|
|
|
|
protected definition ID {obC obD : Type} {C : category obC} {D : category obD} (F : C ⇒ D)
|
|
|
|
|
: natural_transformation F F := id
|
|
|
|
|
-- protected definition Id {C D : Category} {F : Functor C D} : Natural_transformation F F :=
|
|
|
|
|
-- Natural_transformation.mk id
|
|
|
|
|
-- protected definition iD {C D : Category} (F : Functor C D) : Natural_transformation F F :=
|
|
|
|
|
-- Natural_transformation.mk id
|
|
|
|
|
|
|
|
|
|
protected theorem id_left {obC obD : Type} {C : category obC} {D : category obD} {F G : C ⇒ D}
|
|
|
|
|
{η : F ==> G} : natural_transformation.compose id η = η :=
|
|
|
|
|
rec (λf H, congr_arg2_dep mk (funext (take x, id_left)) proof_irrel) η
|
|
|
|
|
|
|
|
|
|
protected theorem id_right {obC obD : Type} {C : category obC} {D : category obD} {F G : C ⇒ D}
|
|
|
|
|
{η : F ==> G} : natural_transformation.compose η id = η :=
|
|
|
|
|
rec (λf H, congr_arg2_dep mk (funext (take x, id_right)) proof_irrel) η
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
end
|
|
|
|
|
end natural_transformation
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
-- examples of categories / basic constructions (TODO: move to separate file)
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
|
|
|
|
open functor
|
|
|
|
|
namespace category
|
2014-09-26 23:36:04 +00:00
|
|
|
|
section
|
|
|
|
|
open unit
|
|
|
|
|
definition one [instance] : category unit :=
|
|
|
|
|
category.mk (λa b, unit) (λ a b c f g, star) (λ a, star) (λ a b c d f g h, unit.equal _ _)
|
|
|
|
|
(λ a b f, unit.equal _ _) (λ a b f, unit.equal _ _)
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
parameter {ob : Type}
|
|
|
|
|
definition opposite (C : category ob) : category ob :=
|
|
|
|
|
category.mk (λa b, mor b a) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, symm assoc)
|
|
|
|
|
(λ a b f, id_right) (λ a b f, id_left)
|
|
|
|
|
precedence `∘op` : 60
|
|
|
|
|
infixr `∘op` := @compose _ (opposite _) _ _ _
|
|
|
|
|
|
|
|
|
|
parameters {C : category ob} {a b c : ob}
|
|
|
|
|
|
|
|
|
|
theorem compose_op {f : @mor ob C a b} {g : mor b c} : f ∘op g = g ∘ f :=
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
theorem op_op {C : category ob} : opposite (opposite C) = C :=
|
|
|
|
|
category.rec (λ mor comp id assoc idl idr, refl (mk _ _ _ _ _ _)) C
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition Opposite (C : Category) : Category :=
|
|
|
|
|
Category.mk (objects C) (opposite (category_instance C))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
section
|
|
|
|
|
definition type_category : category Type :=
|
|
|
|
|
mk (λA B, A → B) (λ a b c, function.compose) (λ a, function.id)
|
|
|
|
|
(λ a b c d h g f, symm (function.compose_assoc h g f))
|
|
|
|
|
(λ a b f, function.compose_id_left f) (λ a b f, function.compose_id_right f)
|
|
|
|
|
end
|
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
section cat_Cat
|
|
|
|
|
|
|
|
|
|
definition Cat : category Category :=
|
2014-09-26 23:36:04 +00:00
|
|
|
|
mk (λ a b, Functor a b) (λ a b c g f, functor.Compose g f) (λ a, functor.Id)
|
|
|
|
|
(λ a b c d h g f, functor.Assoc) (λ a b f, functor.Id_left)
|
|
|
|
|
(λ a b f, functor.Id_right)
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
|
|
|
|
end cat_Cat
|
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
section functor_category
|
|
|
|
|
parameters {obC obD : Type} (C : category obC) (D : category obD)
|
|
|
|
|
definition functor_category : category (functor C D) :=
|
|
|
|
|
mk (λa b, natural_transformation a b)
|
|
|
|
|
(λ a b c g f, natural_transformation.compose g f)
|
|
|
|
|
(λ a, natural_transformation.id)
|
|
|
|
|
(λ a b c d h g f, natural_transformation.assoc)
|
|
|
|
|
(λ a b f, natural_transformation.id_left)
|
|
|
|
|
(λ a b f, natural_transformation.id_right)
|
|
|
|
|
end functor_category
|
|
|
|
|
|
|
|
|
|
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
section slice
|
|
|
|
|
open sigma
|
|
|
|
|
|
|
|
|
|
definition slice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), mor b c) :=
|
|
|
|
|
mk (λa b, Σ(g : mor (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a)
|
|
|
|
|
(λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
|
2014-09-26 23:36:04 +00:00
|
|
|
|
(show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a,
|
|
|
|
|
proof
|
|
|
|
|
calc
|
|
|
|
|
dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : assoc
|
|
|
|
|
... = dpr2 b ∘ dpr1 f : {dpr2 g}
|
|
|
|
|
... = dpr2 a : {dpr2 f}
|
|
|
|
|
qed))
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(λ a, dpair id id_right)
|
|
|
|
|
(λ a b c d h g f, dpair_eq assoc proof_irrel)
|
|
|
|
|
(λ a b f, sigma.equal id_left proof_irrel)
|
|
|
|
|
(λ a b f, sigma.equal id_right proof_irrel)
|
2014-09-26 23:36:04 +00:00
|
|
|
|
-- We give proof_irrel instead of rfl, to give the unifier an easier time
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
end slice
|
|
|
|
|
|
|
|
|
|
section coslice
|
|
|
|
|
open sigma
|
|
|
|
|
|
|
|
|
|
definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), mor c b) :=
|
|
|
|
|
mk (λa b, Σ(g : mor (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b)
|
|
|
|
|
(λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
|
2014-09-26 23:36:04 +00:00
|
|
|
|
(show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c,
|
|
|
|
|
proof
|
|
|
|
|
calc
|
|
|
|
|
(dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm assoc
|
|
|
|
|
... = dpr1 g ∘ dpr2 b : {dpr2 f}
|
|
|
|
|
... = dpr2 c : {dpr2 g}
|
|
|
|
|
qed))
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(λ a, dpair id id_left)
|
|
|
|
|
(λ a b c d h g f, dpair_eq assoc proof_irrel)
|
|
|
|
|
(λ a b f, sigma.equal id_left proof_irrel)
|
|
|
|
|
(λ a b f, sigma.equal id_right proof_irrel)
|
|
|
|
|
|
|
|
|
|
-- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) :
|
|
|
|
|
-- coslice C c = opposite (slice (opposite C) c) :=
|
|
|
|
|
-- sorry
|
|
|
|
|
end coslice
|
|
|
|
|
|
|
|
|
|
section product
|
|
|
|
|
open prod
|
|
|
|
|
definition product {obC obD : Type} (C : category obC) (D : category obD)
|
|
|
|
|
: category (obC × obD) :=
|
|
|
|
|
mk (λa b, mor (pr1 a) (pr1 b) × mor (pr2 a) (pr2 b))
|
|
|
|
|
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
|
|
|
|
(λ a, (id,id))
|
|
|
|
|
(λ a b c d h g f, pair_eq assoc assoc )
|
|
|
|
|
(λ a b f, prod.equal id_left id_left )
|
|
|
|
|
(λ a b f, prod.equal id_right id_right)
|
|
|
|
|
|
|
|
|
|
end product
|
|
|
|
|
|
|
|
|
|
section arrow
|
|
|
|
|
open sigma eq_ops
|
2014-09-26 23:36:04 +00:00
|
|
|
|
-- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob}
|
|
|
|
|
-- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2}
|
|
|
|
|
-- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2)
|
|
|
|
|
-- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 :=
|
|
|
|
|
-- calc
|
|
|
|
|
-- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc
|
|
|
|
|
-- ... = (h2 ∘ f2) ∘ g1 : {H2}
|
|
|
|
|
-- ... = h2 ∘ (f2 ∘ g1) : symm assoc
|
|
|
|
|
-- ... = h2 ∘ (h1 ∘ f1) : {H1}
|
|
|
|
|
-- ... = (h2 ∘ h1) ∘ f1 : assoc
|
|
|
|
|
|
|
|
|
|
-- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), mor a b) :=
|
|
|
|
|
-- mk (λa b, Σ(g : mor (dpr1 a) (dpr1 b)) (h : mor (dpr2' a) (dpr2' b)),
|
|
|
|
|
-- dpr3 b ∘ g = h ∘ dpr3 a)
|
|
|
|
|
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g))))
|
|
|
|
|
-- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left))))
|
|
|
|
|
-- (λ a b c d h g f, dtrip_eq2 assoc assoc proof_irrel)
|
|
|
|
|
-- (λ a b f, trip.equal2 id_left id_left proof_irrel)
|
|
|
|
|
-- (λ a b f, trip.equal2 id_right id_right proof_irrel)
|
|
|
|
|
|
|
|
|
|
definition arrow_obs (ob : Type) (C : category ob) :=
|
|
|
|
|
Σ(a b : ob), mor a b
|
|
|
|
|
|
|
|
|
|
definition src {ob : Type} {C : category ob} (a : arrow_obs ob C) : ob :=
|
|
|
|
|
dpr1 a
|
|
|
|
|
|
|
|
|
|
definition dst {ob : Type} {C : category ob} (a : arrow_obs ob C) : ob :=
|
|
|
|
|
dpr2' a
|
|
|
|
|
|
|
|
|
|
definition to_mor {ob : Type} {C : category ob} (a : arrow_obs ob C) : mor (src a) (dst a) :=
|
|
|
|
|
dpr3 a
|
|
|
|
|
|
|
|
|
|
definition arrow_mor (ob : Type) (C : category ob) (a b : arrow_obs ob C) : Type :=
|
|
|
|
|
Σ (g : mor (src a) (src b)) (h : mor (dst a) (dst b)), to_mor b ∘ g = h ∘ to_mor a
|
|
|
|
|
|
|
|
|
|
definition mor_src {ob : Type} {C : category ob} {a b : arrow_obs ob C} (m : arrow_mor ob C a b) : mor (src a) (src b) :=
|
|
|
|
|
dpr1 m
|
|
|
|
|
|
|
|
|
|
definition mor_dst {ob : Type} {C : category ob} {a b : arrow_obs ob C} (m : arrow_mor ob C a b) : mor (dst a) (dst b) :=
|
|
|
|
|
dpr2' m
|
|
|
|
|
|
|
|
|
|
definition commute {ob : Type} {C : category ob} {a b : arrow_obs ob C} (m : arrow_mor ob C a b) :
|
|
|
|
|
to_mor b ∘ (mor_src m) = (mor_dst m) ∘ to_mor a :=
|
|
|
|
|
dpr3 m
|
|
|
|
|
|
|
|
|
|
definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) :=
|
|
|
|
|
mk (λa b, arrow_mor ob C a b)
|
|
|
|
|
(λ a b c g f, dpair (mor_src g ∘ mor_src f) (dpair (mor_dst g ∘ mor_dst f)
|
|
|
|
|
(show to_mor c ∘ (mor_src g ∘ mor_src f) = (mor_dst g ∘ mor_dst f) ∘ to_mor a,
|
|
|
|
|
proof
|
|
|
|
|
calc
|
|
|
|
|
to_mor c ∘ (mor_src g ∘ mor_src f) = (to_mor c ∘ mor_src g) ∘ mor_src f : assoc
|
|
|
|
|
... = (mor_dst g ∘ to_mor b) ∘ mor_src f : {commute g}
|
|
|
|
|
... = mor_dst g ∘ (to_mor b ∘ mor_src f) : symm assoc
|
|
|
|
|
... = mor_dst g ∘ (mor_dst f ∘ to_mor a) : {commute f}
|
|
|
|
|
... = (mor_dst g ∘ mor_dst f) ∘ to_mor a : assoc
|
|
|
|
|
qed)
|
|
|
|
|
))
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
(λ a, dpair id (dpair id (id_right ⬝ (symm id_left))))
|
2014-09-26 23:36:04 +00:00
|
|
|
|
(λ a b c d h g f, dtrip_eq_ndep assoc assoc proof_irrel)
|
|
|
|
|
(λ a b f, trip.equal_ndep id_left id_left proof_irrel)
|
|
|
|
|
(λ a b f, trip.equal_ndep id_right id_right proof_irrel)
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
end arrow
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
|
2014-09-26 23:36:04 +00:00
|
|
|
|
-- definition foo
|
|
|
|
|
-- : category (sorry) :=
|
feat(library): add constructions of categories, some changes in eq, sigma and path
in eq, add theorem for proof irrelevance and congruence for binary functions
in sigma, add some support for triplets
in path, comment out two unneccesary definitions
in category, add Cat, slice, coslice, product and arrow categories, also add fully bundled approach
2014-09-22 18:48:09 +00:00
|
|
|
|
-- mk (λa b, sorry)
|
|
|
|
|
-- (λ a b c g f, sorry)
|
|
|
|
|
-- (λ a, sorry)
|
|
|
|
|
-- (λ a b c d h g f, sorry)
|
|
|
|
|
-- (λ a b f, sorry)
|
|
|
|
|
-- (λ a b f, sorry)
|
|
|
|
|
|
|
|
|
|
end category
|