lean2/src/builtin/heq.lean

40 lines
1.4 KiB
Text
Raw Normal View History

-- Heterogenous equality
variable heq {A B : TypeU} : A → B → Bool
infixl 50 == : heq
axiom heq_eq {A : TypeU} (a b : A) : a == b ↔ a = b
definition to_eq {A : TypeU} {a b : A} (H : a == b) : a = b
:= (heq_eq a b) ◂ H
definition to_heq {A : TypeU} {a b : A} (H : a = b) : a == b
:= (symm (heq_eq a b)) ◂ H
theorem hrefl {A : TypeU} (a : A) : a == a
:= to_heq (refl a)
axiom hsymm {A B : TypeU} {a : A} {b : B} : a == b → b == a
axiom htrans {A B C : TypeU} {a : A} {b : B} {c : C} : a == b → b == c → a == c
axiom hcongr {A A' : TypeU} {B : A → TypeU} {B' : A' → TypeU} {f : ∀ x, B x} {f' : ∀ x, B' x} {a : A} {a' : A'} :
f == f' → a == a' → f a == f' a'
universe M ≥ 1
universe U ≥ M + 1
definition TypeM := (Type M)
-- In the following definitions the type of A and A' cannot be TypeU
-- because A = A' would be @eq (Type U+1) A A', and
-- the type of eq is (∀T : (Type U), T → T → bool).
-- So, we define M a universe smaller than U.
axiom hfunext {A A' : TypeM} {B : A → TypeU} {B' : A' → TypeU} {f : ∀ x, B x} {f' : ∀ x, B' x} :
A = A' → (∀ x x', x == x' → f x == f' x') → f == f'
axiom hpiext {A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM} :
A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)
axiom hallext {A A' : TypeM} {B : A → Bool} {B' : A' → Bool} :
A = A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x)