2015-03-13 16:13:50 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
|
|
Module: init.path
|
|
|
|
|
Author: Floris van Doorn
|
|
|
|
|
|
|
|
|
|
Theorems about functions with multiple arguments
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
variables {A U V W X Y Z : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
|
|
|
|
{E : Πa b c, D a b c → Type}
|
2015-03-13 22:27:29 +00:00
|
|
|
|
variables {a a' : A} {u u' : U} {v v' : V} {w w' : W} {x x' x'' : X} {y y' : Y}
|
2015-03-13 16:13:50 +00:00
|
|
|
|
{b : B a} {b' : B a'}
|
|
|
|
|
{c : C a b} {c' : C a' b'}
|
|
|
|
|
{d : D a b c} {d' : D a' b' c'}
|
|
|
|
|
|
|
|
|
|
namespace eq
|
|
|
|
|
/-
|
|
|
|
|
Naming convention:
|
|
|
|
|
The theorem which states how to construct an path between two function applications is
|
|
|
|
|
api₀i₁...iₙ.
|
|
|
|
|
Here i₀, ... iₙ are digits, n is the arity of the function(s),
|
|
|
|
|
and iⱼ specifies the dimension of the path between the jᵗʰ argument
|
|
|
|
|
(i₀ specifies the dimension of the path between the functions).
|
|
|
|
|
A value iⱼ ≡ 0 means that the jᵗʰ arguments are definitionally equal
|
|
|
|
|
The functions are non-dependent, except when the theorem name contains trailing zeroes
|
|
|
|
|
(where the function is dependent only in the arguments where it doesn't result in any
|
|
|
|
|
transports in the theorem statement).
|
|
|
|
|
For the fully-dependent versions (except that the conclusion doesn't contain a transport)
|
|
|
|
|
we write
|
|
|
|
|
apDi₀i₁...iₙ.
|
|
|
|
|
|
|
|
|
|
For versions where only some arguments depend on some other arguments,
|
|
|
|
|
or for versions with transport in the conclusion (like apD), we don't have a
|
|
|
|
|
consistent naming scheme (yet).
|
|
|
|
|
|
|
|
|
|
We don't prove each theorem systematically, but prove only the ones which we actually need.
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
definition homotopy2 [reducible] (f g : Πa b, C a b) : Type :=
|
|
|
|
|
Πa b, f a b = g a b
|
|
|
|
|
definition homotopy3 [reducible] (f g : Πa b c, D a b c) : Type :=
|
|
|
|
|
Πa b c, f a b c = g a b c
|
|
|
|
|
definition homotopy4 [reducible] (f g : Πa b c d, E a b c d) : Type :=
|
|
|
|
|
Πa b c d, f a b c d = g a b c d
|
|
|
|
|
|
|
|
|
|
notation f `∼2`:50 g := homotopy2 f g
|
|
|
|
|
notation f `∼3`:50 g := homotopy3 f g
|
|
|
|
|
|
|
|
|
|
definition ap011 (f : U → V → W) (Hu : u = u') (Hv : v = v') : f u v = f u' v' :=
|
|
|
|
|
eq.rec_on Hu (ap (f u) Hv)
|
|
|
|
|
|
|
|
|
|
definition ap0111 (f : U → V → W → X) (Hu : u = u') (Hv : v = v') (Hw : w = w')
|
|
|
|
|
: f u v w = f u' v' w' :=
|
|
|
|
|
eq.rec_on Hu (ap011 (f u) Hv Hw)
|
|
|
|
|
|
|
|
|
|
definition ap01111 (f : U → V → W → X → Y) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x')
|
|
|
|
|
: f u v w x = f u' v' w' x' :=
|
|
|
|
|
eq.rec_on Hu (ap0111 (f u) Hv Hw Hx)
|
|
|
|
|
|
|
|
|
|
definition ap010 (f : X → Πa, B a) (Hx : x = x') : f x ∼ f x' :=
|
|
|
|
|
λa, eq.rec_on Hx idp
|
|
|
|
|
|
|
|
|
|
definition ap0100 (f : X → Πa b, C a b) (Hx : x = x') : f x ∼2 f x' :=
|
|
|
|
|
λa b, eq.rec_on Hx idp
|
|
|
|
|
|
|
|
|
|
definition ap01000 (f : X → Πa b c, D a b c) (Hx : x = x') : f x ∼3 f x' :=
|
|
|
|
|
λa b c, eq.rec_on Hx idp
|
|
|
|
|
|
|
|
|
|
definition apD011 (f : Πa, B a → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
|
|
|
|
|
: f a b = f a' b' :=
|
|
|
|
|
eq.rec_on Hb (eq.rec_on Ha idp)
|
|
|
|
|
|
|
|
|
|
definition apD0111 (f : Πa b, C a b → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
|
|
|
|
|
(Hc : apD011 C Ha Hb ▹ c = c')
|
|
|
|
|
: f a b c = f a' b' c' :=
|
|
|
|
|
eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp))
|
|
|
|
|
|
|
|
|
|
definition apD01111 (f : Πa b c, D a b c → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b')
|
|
|
|
|
(Hc : apD011 C Ha Hb ▹ c = c') (Hd : apD0111 D Ha Hb Hc ▹ d = d')
|
|
|
|
|
: f a b c d = f a' b' c' d' :=
|
|
|
|
|
eq.rec_on Hd (eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp)))
|
|
|
|
|
|
|
|
|
|
definition apD100 {f g : Πa b, C a b} (p : f = g) : f ∼2 g :=
|
|
|
|
|
λa b, apD10 (apD10 p a) b
|
|
|
|
|
|
|
|
|
|
definition apD1000 {f g : Πa b c, D a b c} (p : f = g) : f ∼3 g :=
|
|
|
|
|
λa b c, apD100 (apD10 p a) b c
|
|
|
|
|
|
2015-03-13 22:27:29 +00:00
|
|
|
|
/- some properties of these variants of ap -/
|
|
|
|
|
|
|
|
|
|
-- we only prove what is needed somewhere
|
|
|
|
|
|
|
|
|
|
definition ap010_con (f : X → Πa, B a) (p : x = x') (q : x' = x'') :
|
|
|
|
|
ap010 f (p ⬝ q) a = ap010 f p a ⬝ ap010 f q a :=
|
|
|
|
|
eq.rec_on q (eq.rec_on p idp)
|
|
|
|
|
|
|
|
|
|
definition ap010_ap (f : X → Πa, B a) (g : Y → X) (p : y = y') :
|
|
|
|
|
ap010 f (ap g p) a = ap010 (λy, f (g y)) p a :=
|
|
|
|
|
eq.rec_on p idp
|
|
|
|
|
|
2015-03-13 16:13:50 +00:00
|
|
|
|
/- the following theorems are function extentionality for functions with multiple arguments -/
|
|
|
|
|
|
|
|
|
|
definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f ∼2 g) : f = g :=
|
|
|
|
|
eq_of_homotopy (λa, eq_of_homotopy (H a))
|
|
|
|
|
|
|
|
|
|
definition eq_of_homotopy3 {f g : Πa b c, D a b c} (H : f ∼3 g) : f = g :=
|
|
|
|
|
eq_of_homotopy (λa, eq_of_homotopy2 (H a))
|
|
|
|
|
|
|
|
|
|
definition eq_of_homotopy2_id (f : Πa b, C a b)
|
|
|
|
|
: eq_of_homotopy2 (λa b, idpath (f a b)) = idpath f :=
|
|
|
|
|
begin
|
|
|
|
|
apply concat,
|
|
|
|
|
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy_id},
|
|
|
|
|
apply eq_of_homotopy_id
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition eq_of_homotopy3_id (f : Πa b c, D a b c)
|
|
|
|
|
: eq_of_homotopy3 (λa b c, idpath (f a b c)) = idpath f :=
|
|
|
|
|
begin
|
|
|
|
|
apply concat,
|
|
|
|
|
{apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy2_id},
|
|
|
|
|
apply eq_of_homotopy_id
|
|
|
|
|
end
|
2015-03-13 22:27:29 +00:00
|
|
|
|
|
2015-03-13 16:13:50 +00:00
|
|
|
|
end eq
|
|
|
|
|
|
2015-03-13 22:27:29 +00:00
|
|
|
|
open eq is_equiv
|
2015-03-13 16:13:50 +00:00
|
|
|
|
namespace funext
|
|
|
|
|
definition is_equiv_apD100 [instance] (f g : Πa b, C a b) : is_equiv (@apD100 A B C f g) :=
|
|
|
|
|
adjointify _
|
|
|
|
|
eq_of_homotopy2
|
|
|
|
|
begin
|
2015-03-28 00:26:06 +00:00
|
|
|
|
intro H, esimp [apD100, eq_of_homotopy2, function.compose],
|
2015-03-13 16:13:50 +00:00
|
|
|
|
apply eq_of_homotopy, intro a,
|
2015-04-23 19:38:15 +00:00
|
|
|
|
apply concat, apply (ap (λx, apD10 (x a))), apply (retr apD10),
|
2015-03-13 16:13:50 +00:00
|
|
|
|
apply (retr apD10)
|
|
|
|
|
end
|
|
|
|
|
begin
|
|
|
|
|
intro p, cases p, apply eq_of_homotopy2_id
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition is_equiv_apD1000 [instance] (f g : Πa b c, D a b c)
|
|
|
|
|
: is_equiv (@apD1000 A B C D f g) :=
|
|
|
|
|
adjointify _
|
|
|
|
|
eq_of_homotopy3
|
|
|
|
|
begin
|
|
|
|
|
intro H, apply eq_of_homotopy, intro a,
|
|
|
|
|
apply concat,
|
|
|
|
|
{apply (ap (λx, @apD100 _ _ (λ(b : B a)(c : C a b), _) _ _ (x a))),
|
|
|
|
|
apply (retr apD10)},
|
|
|
|
|
--TODO: remove implicit argument after #469 is closed
|
|
|
|
|
apply (@retr _ _ apD100 !is_equiv_apD100) --is explicit argument needed here?
|
|
|
|
|
end
|
|
|
|
|
begin
|
|
|
|
|
intro p, cases p, apply eq_of_homotopy3_id
|
|
|
|
|
end
|
|
|
|
|
end funext
|
|
|
|
|
|
|
|
|
|
namespace eq
|
|
|
|
|
open funext
|
|
|
|
|
local attribute funext.is_equiv_apD100 [instance]
|
|
|
|
|
protected definition homotopy2.rec_on {f g : Πa b, C a b} {P : (f ∼2 g) → Type}
|
|
|
|
|
(p : f ∼2 g) (H : Π(q : f = g), P (apD100 q)) : P p :=
|
|
|
|
|
retr apD100 p ▹ H (eq_of_homotopy2 p)
|
|
|
|
|
|
|
|
|
|
protected definition homotopy3.rec_on {f g : Πa b c, D a b c} {P : (f ∼3 g) → Type}
|
|
|
|
|
(p : f ∼3 g) (H : Π(q : f = g), P (apD1000 q)) : P p :=
|
|
|
|
|
retr apD1000 p ▹ H (eq_of_homotopy3 p)
|
2015-03-13 22:27:29 +00:00
|
|
|
|
|
|
|
|
|
definition apD10_ap (f : X → Πa, B a) (p : x = x')
|
|
|
|
|
: apD10 (ap f p) = ap010 f p :=
|
|
|
|
|
eq.rec_on p idp
|
|
|
|
|
|
|
|
|
|
definition eq_of_homotopy_ap010 (f : X → Πa, B a) (p : x = x')
|
|
|
|
|
: eq_of_homotopy (ap010 f p) = ap f p :=
|
|
|
|
|
inv_eq_of_eq !apD10_ap⁻¹
|
|
|
|
|
|
|
|
|
|
definition ap_eq_ap_of_homotopy {f : X → Πa, B a} {p q : x = x'} (H : ap010 f p ∼ ap010 f q)
|
|
|
|
|
: ap f p = ap f q :=
|
|
|
|
|
calc
|
|
|
|
|
ap f p = eq_of_homotopy (ap010 f p) : eq_of_homotopy_ap010
|
|
|
|
|
... = eq_of_homotopy (ap010 f q) : eq_of_homotopy H
|
|
|
|
|
... = ap f q : eq_of_homotopy_ap010
|
|
|
|
|
|
2015-03-13 16:13:50 +00:00
|
|
|
|
end eq
|