lean2/library/data/perm.lean

196 lines
7.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.perm
Author: Leonardo de Moura
List permutations
-/
import data.list
open list setoid nat
variables {A B : Type}
inductive perm : list A → list A → Prop :=
| nil : perm [] []
| skip : Π (x : A) {l₁ l₂ : list A}, perm l₁ l₂ → perm (x::l₁) (x::l₂)
| swap : Π (x y : A) (l : list A), perm (y::x::l) (x::y::l)
| trans : Π {l₁ l₂ l₃ : list A}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃
namespace perm
infix ~:50 := perm
theorem eq_nil_of_perm_nil {l₁ : list A} (p : [] ~ l₁) : l₁ = [] :=
have gen : ∀ (l₂ : list A) (p : l₂ ~ l₁), l₂ = [] → l₁ = [], from
take l₂ p, perm.induction_on p
(λ h, h)
(λ x y l₁ l₂ p₁ r₁, list.no_confusion r₁)
(λ x y l e, list.no_confusion e)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
gen [] p rfl
theorem not_perm_nil_cons (x : A) (l : list A) : ¬ [] ~ (x::l) :=
have gen : ∀ (l₁ l₂ : list A) (p : l₁ ~ l₂), l₁ = [] → l₂ = (x::l) → false, from
take l₁ l₂ p, perm.induction_on p
(λ e₁ e₂, list.no_confusion e₂)
(λ x l₁ l₂ p₁ r₁ e₁ e₂, list.no_confusion e₁)
(λ x y l e₁ e₂, list.no_confusion e₁)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e₁ e₂,
begin
rewrite [e₂ at *, e₁ at *],
have e₃ : l₂ = [], from eq_nil_of_perm_nil p₁,
exact (r₂ e₃ rfl)
end),
assume p, gen [] (x::l) p rfl rfl
protected theorem refl : ∀ (l : list A), l ~ l
| [] := nil
| (x::xs) := skip x (refl xs)
protected theorem symm : ∀ {l₁ l₂ : list A}, l₁ ~ l₂ → l₂ ~ l₁ :=
take l₁ l₂ p, perm.induction_on p
nil
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, swap y x l)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁)
theorem eqv (A : Type) : equivalence (@perm A) :=
mk_equivalence (@perm A) (@perm.refl A) (@perm.symm A) (@perm.trans A)
protected definition is_setoid [instance] (A : Type) : setoid (list A) :=
setoid.mk (@perm A) (perm.eqv A)
calc_refl perm.refl
calc_symm perm.symm
calc_trans perm.trans
-- TODO: remove this theorems after we improve calc
theorem perm_of_eq_of_perm (l₁ l₂ l₃ : list A) : l₁ = l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
assume e p, eq.rec_on (eq.symm e) p
theorem perm_of_perm_of_eq (l₁ l₂ l₃ : list A) : l₁ ~ l₂ → l₂ = l₃ → l₁ ~ l₃ :=
assume p e, eq.rec_on e p
calc_trans perm_of_perm_of_eq
calc_trans perm_of_eq_of_perm
theorem mem_perm (a : A) (l₁ l₂ : list A) : l₁ ~ l₂ → a ∈ l₁ → a ∈ l₂ :=
assume p, perm.induction_on p
(λ h, h)
(λ x l₁ l₂ p₁ r₁ i, or.elim i
(assume aeqx : a = x, by rewrite aeqx; apply !mem_cons)
(assume ainl₁ : a ∈ l₁, or.inr (r₁ ainl₁)))
(λ x y l ainyxl, or.elim ainyxl
(assume aeqy : a = y, by rewrite aeqy; exact (or.inr !mem_cons))
(assume ainxl : a ∈ x::l, or.elim ainxl
(assume aeqx : a = x, or.inl aeqx)
(assume ainl : a ∈ l, or.inr (or.inr ainl))))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (l₁++t₁) ~ (l₂++t₁) :=
assume p, perm.induction_on p
!refl
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, !swap)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
theorem perm_app_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (l++t₁) ~ (l++t₂) :=
list.induction_on l
(λ p, p)
(λ x xs r p, skip x (r p))
theorem perm_app {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (l₁++t₁) ~ (l₂++t₂) :=
assume p₁ p₂, trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂)
theorem perm_app_cons (a : A) {h₁ h₂ t₁ t₂ : list A} : h₁ ~ h₂ → t₁ ~ t₂ → (h₁ ++ (a::t₁)) ~ (h₂ ++ (a::t₂)) :=
assume p₁ p₂, perm_app p₁ (skip a p₂)
theorem perm_cons_app (a : A) : ∀ (l : list A), (a::l) ~ (l ++ [a])
| [] := !refl
| (x::xs) := calc
a::x::xs ~ x::a::xs : swap x a xs
... ~ x::(xs++[a]) : skip x (perm_cons_app xs)
theorem perm_app_comm {l₁ l₂ : list A} : (l₁++l₂) ~ (l₂++l₁) :=
list.induction_on l₁
(by rewrite [append_nil_right, append_nil_left]; apply refl)
(λ a t r, calc
a::(t++l₂) ~ a::(l₂++t) : skip a r
... ~ l₂++t++[a] : perm_cons_app
... = l₂++(t++[a]) : append.assoc
... ~ l₂++(a::t) : perm_app_right l₂ (symm (perm_cons_app a t)))
theorem length_eq_length_of_perm {l₁ l₂ : list A} : l₁ ~ l₂ → length l₁ = length l₂ :=
assume p, perm.induction_on p
rfl
(λ x l₁ l₂ p r, by rewrite [*length_cons, r])
(λ x y l, by rewrite *length_cons)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂)
theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : [a] ~ l → l = [a] :=
have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from
take l₂, assume p, perm.induction_on p
(λ e, e)
(λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []),
begin
rewrite [e₁, e₂ at p],
have h₁ : l₂ = [], from eq_nil_of_perm_nil p,
rewrite h₁
end))
(λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
assume p, gen [a] p rfl
theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b :=
assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁)
theorem perm_rev : ∀ (l : list A), l ~ (reverse l)
| [] := nil
| (x::xs) := calc
x::xs ~ xs++[x] : perm_cons_app x xs
... ~ reverse xs ++ [x] : perm_app_left [x] (perm_rev xs)
... = reverse (x::xs) : by rewrite [reverse_cons, concat_eq_append]
theorem perm_middle (a : A) (l₁ l₂ : list A) : (a::l₁)++l₂ ~ l₁++(a::l₂) :=
calc
(a::l₁) ++ l₂ = a::(l₁++l₂) : rfl
... ~ l₁++l₂++[a] : perm_cons_app
... = l₁++(l₂++[a]) : append.assoc
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
theorem perm_cons_app_cons {l l₁ l₂ : list A} (a : A) : l ~ l₁++l₂ → a::l ~ l₁++(a::l₂) :=
assume p, calc
a::l ~ l++[a] : perm_cons_app
... ~ l₁++l₂++[a] : perm_app_left [a] p
... = l₁++(l₂++[a]) : append.assoc
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
theorem perm_induction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂)
(h₁ : P [] [])
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
(h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂))
(h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃)
: P l₁ l₂ :=
have P_refl : ∀ l, P l l
| [] := h₁
| (x::xs) := h₂ x xs xs !refl (P_refl xs),
perm.induction_on p h₁ h₂ (λ x y l, h₃ x y l l !refl !P_refl) h₄
theorem xswap {l₁ l₂ : list A} (x y : A) : l₁ ~ l₂ → x::y::l₁ ~ y::x::l₂ :=
assume p, calc
x::y::l₁ ~ y::x::l₁ : swap
... ~ y::x::l₂ : skip y (skip x p)
theorem perm_map (f : A → B) {l₁ l₂ : list A} : l₁ ~ l₂ → map f l₁ ~ map f l₂ :=
assume p, perm_induction_on p
nil
(λ x l₁ l₂ p r, skip (f x) r)
(λ x y l₁ l₂ p r, xswap (f y) (f x) r)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
lemma perm_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → l₁~a::l₂ :=
assume q, qeq.induction_on q
(λ h, !refl)
(λ b t₁ t₂ q₁ r₁, calc
b::t₂ ~ b::a::t₁ : skip b r₁
... ~ a::b::t₁ : swap)
end perm