feat(library/data/perm): add list permutation module
This commit is contained in:
parent
dbe54c4fb5
commit
54136c1ec0
1 changed files with 148 additions and 0 deletions
148
library/data/perm.lean
Normal file
148
library/data/perm.lean
Normal file
|
@ -0,0 +1,148 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.perm
|
||||
Author: Leonardo de Moura
|
||||
|
||||
List permutations
|
||||
-/
|
||||
import data.list
|
||||
open list setoid
|
||||
|
||||
variable {A : Type}
|
||||
|
||||
inductive perm : list A → list A → Prop :=
|
||||
| nil : perm [] []
|
||||
| skip : Π (x : A) {l₁ l₂ : list A}, perm l₁ l₂ → perm (x::l₁) (x::l₂)
|
||||
| swap : Π (x y : A) (l : list A), perm (y::x::l) (x::y::l)
|
||||
| trans : Π {l₁ l₂ l₃ : list A}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃
|
||||
|
||||
namespace perm
|
||||
theorem eq_nil_of_perm_nil {l₁ : list A} (p : perm [] l₁) : l₁ = [] :=
|
||||
have gen : ∀ (l₂ : list A) (p : perm l₂ l₁), l₂ = [] → l₁ = [], from
|
||||
take l₂ p, perm.induction_on p
|
||||
(λ h, h)
|
||||
(λ x y l₁ l₂ p₁ r₁, list.no_confusion r₁)
|
||||
(λ x y l e, list.no_confusion e)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
|
||||
gen [] p rfl
|
||||
|
||||
theorem not_perm_nil_cons (x : A) (l : list A) : ¬ perm [] (x::l) :=
|
||||
have gen : ∀ (l₁ l₂ : list A) (p : perm l₁ l₂), l₁ = [] → l₂ = (x::l) → false, from
|
||||
take l₁ l₂ p, perm.induction_on p
|
||||
(λ e₁ e₂, list.no_confusion e₂)
|
||||
(λ x l₁ l₂ p₁ r₁ e₁ e₂, list.no_confusion e₁)
|
||||
(λ x y l e₁ e₂, list.no_confusion e₁)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e₁ e₂,
|
||||
begin
|
||||
rewrite [e₂ at *, e₁ at *],
|
||||
have e₃ : l₂ = [], from eq_nil_of_perm_nil p₁,
|
||||
exact (r₂ e₃ rfl)
|
||||
end),
|
||||
assume p, gen [] (x::l) p rfl rfl
|
||||
|
||||
protected theorem refl : ∀ (l : list A), perm l l
|
||||
| [] := nil
|
||||
| (x::xs) := skip x (refl xs)
|
||||
|
||||
protected theorem symm : ∀ {l₁ l₂ : list A}, perm l₁ l₂ → perm l₂ l₁ :=
|
||||
take l₁ l₂ p, perm.induction_on p
|
||||
nil
|
||||
(λ x l₁ l₂ p₁ r₁, skip x r₁)
|
||||
(λ x y l, swap y x l)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁)
|
||||
|
||||
theorem is_eqv (A : Type) : equivalence (@perm A) :=
|
||||
mk_equivalence (@perm A) (@refl A) (@symm A) (@trans A)
|
||||
|
||||
protected definition is_setoid [instance] (A : Type) : setoid (list A) :=
|
||||
setoid.mk (@perm A) (is_eqv A)
|
||||
|
||||
theorem mem_perm (a : A) (l₁ l₂ : list A) : perm l₁ l₂ → a ∈ l₁ → a ∈ l₂ :=
|
||||
assume p, perm.induction_on p
|
||||
(λ h, h)
|
||||
(λ x l₁ l₂ p₁ r₁ i, or.elim i
|
||||
(λ aeqx, by rewrite aeqx; apply !mem_cons)
|
||||
(λ ainl₁ : a ∈ l₁, or.inr (r₁ ainl₁)))
|
||||
(λ x y l ainyxl, or.elim ainyxl
|
||||
(λ aeqy : a = y, by rewrite aeqy; exact (or.inr !mem_cons))
|
||||
(λ ainxl : a ∈ x::l, or.elim ainxl
|
||||
(λ aeqx : a = x, or.inl aeqx)
|
||||
(λ ainl : a ∈ l, or.inr (or.inr ainl))))
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
|
||||
|
||||
theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : perm l₁ l₂ → perm (l₁++t₁) (l₂++t₁) :=
|
||||
assume p, perm.induction_on p
|
||||
!refl
|
||||
(λ x l₁ l₂ p₁ r₁, skip x r₁)
|
||||
(λ x y l, !swap)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
||||
|
||||
theorem perm_app_right (l : list A) {t₁ t₂ : list A} : perm t₁ t₂ → perm (l++t₁) (l++t₂) :=
|
||||
list.induction_on l
|
||||
(λ p, p)
|
||||
(λ x xs r p, skip x (r p))
|
||||
|
||||
theorem perm_app {l₁ l₂ t₁ t₂ : list A} : perm l₁ l₂ → perm t₁ t₂ → perm (l₁++t₁) (l₂++t₂) :=
|
||||
assume p₁ p₂, trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂)
|
||||
|
||||
theorem perm_app_cons (a : A) {h₁ h₂ t₁ t₂ : list A} : perm h₁ h₂ → perm t₁ t₂ → perm (h₁ ++ (a::t₁)) (h₂ ++ (a::t₂)) :=
|
||||
assume p₁ p₂, perm_app p₁ (skip a p₂)
|
||||
|
||||
theorem perm_cons_app (a : A) : ∀ (l : list A), perm (a::l) (l ++ [a])
|
||||
| [] := !refl
|
||||
| (x::xs) :=
|
||||
show perm (a::x::xs) (x::(xs ++ [a])), from
|
||||
have p₁ : perm (a::xs) (xs++[a]), from perm_cons_app xs,
|
||||
have p₂ : perm (x::a::xs) (x::(xs++[a])), from skip x p₁,
|
||||
have p₃ : perm (a::x::xs) (x::a::xs), from swap x a xs,
|
||||
trans p₃ p₂
|
||||
|
||||
theorem perm_app_comm {l₁ l₂ : list A} : perm (l₁++l₂) (l₂++l₁) :=
|
||||
list.induction_on l₁
|
||||
(by rewrite [append_nil_right, append_nil_left]; apply refl)
|
||||
(λ a t r,
|
||||
show perm (a::(t++l₂)) (l₂++(a::t)), from
|
||||
begin
|
||||
have p₀ : perm (a::(t++l₂)) (a::(l₂++t)), from skip a r,
|
||||
have p₁ : perm (a::(l₂++t)) (l₂++t++[a]), from !perm_cons_app,
|
||||
have p₂ : perm (t++[a]) (a::t), from symm (perm_cons_app a t),
|
||||
have p₃ : perm (l₂++(t++[a])) (l₂++(a::t)), from perm_app_right l₂ p₂,
|
||||
rewrite [append.assoc at p₁],
|
||||
exact (trans p₀ (trans p₁ p₃))
|
||||
end)
|
||||
|
||||
theorem length_eq_lenght_of_perm {l₁ l₂ : list A} : perm l₁ l₂ → length l₁ = length l₂ :=
|
||||
assume p, perm.induction_on p
|
||||
rfl
|
||||
(λ x l₁ l₂ p r, by rewrite [*length_cons, r])
|
||||
(λ x y l, by rewrite *length_cons)
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂)
|
||||
|
||||
theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : perm [a] l → l = [a] :=
|
||||
have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from
|
||||
take l₂, assume p, perm.induction_on p
|
||||
(λ e, e)
|
||||
(λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []),
|
||||
begin
|
||||
rewrite [e₁, e₂ at p],
|
||||
have h₁ : l₂ = [], from eq_nil_of_perm_nil p,
|
||||
rewrite h₁
|
||||
end))
|
||||
(λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂))
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)),
|
||||
assume p, gen [a] p rfl
|
||||
|
||||
theorem eq_singlenton_of_perm (a b : A) : perm [a] [b] → a = b :=
|
||||
assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁)
|
||||
|
||||
theorem perm_rev : ∀ (l : list A), perm l (reverse l)
|
||||
| [] := nil
|
||||
| (x::xs) :=
|
||||
begin
|
||||
rewrite [reverse_cons, concat_eq_append],
|
||||
apply (trans (perm_cons_app x xs)),
|
||||
exact (perm_app_left [x] (perm_rev xs))
|
||||
end
|
||||
end perm
|
Loading…
Reference in a new issue