2014-10-01 01:01:55 +00:00
|
|
|
|
import logic data.nat
|
|
|
|
|
open nat
|
|
|
|
|
|
|
|
|
|
inductive fin : ℕ → Type :=
|
2015-02-26 01:00:10 +00:00
|
|
|
|
| zero : Π {n : ℕ}, fin (succ n)
|
|
|
|
|
| succ : Π {n : ℕ}, fin n → fin (succ n)
|
2014-10-01 01:01:55 +00:00
|
|
|
|
|
|
|
|
|
theorem foo (n m : ℕ) (a : fin n) (b : fin m) (H : n = m) : cast (congr_arg fin H) a = b :=
|
|
|
|
|
have eq : fin n = fin m, from congr_arg fin H,
|
|
|
|
|
have ceq : cast eq a = b, from sorry, -- sorry implicit argument must have access to eq
|
|
|
|
|
sorry
|