11 lines
383 B
Text
11 lines
383 B
Text
import logic data.nat
|
||
open nat
|
||
|
||
inductive fin : ℕ → Type :=
|
||
| zero : Π {n : ℕ}, fin (succ n)
|
||
| succ : Π {n : ℕ}, fin n → fin (succ n)
|
||
|
||
theorem foo (n m : ℕ) (a : fin n) (b : fin m) (H : n = m) : cast (congr_arg fin H) a = b :=
|
||
have eq : fin n = fin m, from congr_arg fin H,
|
||
have ceq : cast eq a = b, from sorry, -- sorry implicit argument must have access to eq
|
||
sorry
|