lean2/tests/lean/run/nat_bug3.lean

27 lines
732 B
Text
Raw Normal View History

import logic
open eq.ops
namespace experiment
inductive nat : Type :=
| zero : nat
| succ : nat → nat
namespace nat
definition plus (x y : nat) : nat
:= nat.rec x (λn r, succ r) y
definition to_nat [coercion] (n : num) : nat
:= num.rec zero (λn, pos_num.rec (succ zero) (λn r, plus r (plus r (succ zero))) (λn r, plus r r) n) n
definition add (x y : nat) : nat
:= plus x y
constant le : nat → nat → Prop
infixl `+` := add
infix `≤` := le
axiom add_one (n:nat) : n + (succ zero) = succ n
axiom add_le_right_inv {n m k : nat} (H : n + k ≤ m + k) : n ≤ m
theorem succ_le_cancel {n m : nat} (H : succ n ≤ succ m) : n ≤ m
:= add_le_right_inv ((add_one m)⁻¹ ▸ (add_one n)⁻¹ ▸ H)
end nat
end experiment