lean2/hott/algebra/category/functor/adjoint.hlean

179 lines
6.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Adjoint functors
-/
import .attributes .examples
open functor nat_trans is_trunc eq iso prod
namespace category
structure adjoint [class] {C D : Precategory} (F : C ⇒ D) (G : D ⇒ C) :=
(η : 1 ⟹ G ∘f F)
(ε : F ∘f G ⟹ 1)
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
-- TODO(?): define is_left_adjoint in terms of adjoint
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (G : D ⇒ C) -- G
-- (is_adjoint : adjoint F G)
infix ` ⊣ `:55 := adjoint
structure is_left_adjoint [class] {C D : Precategory} (F : C ⇒ D) :=
(G : D ⇒ C)
(η : 1 ⟹ G ∘f F)
(ε : F ∘f G ⟹ 1)
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
abbreviation right_adjoint [unfold 4] := @is_left_adjoint.G
abbreviation unit [unfold 4] := @is_left_adjoint.η
abbreviation counit [unfold 4] := @is_left_adjoint.ε
abbreviation counit_unit_eq [unfold 4] := @is_left_adjoint.H
abbreviation unit_counit_eq [unfold 4] := @is_left_adjoint.K
theorem is_hprop_is_left_adjoint [instance] {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
begin
apply is_hprop.mk,
intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
→ is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
{ intros p q r, induction p, induction q, induction r, esimp,
apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
assert lem₂ : Π (d : carrier D),
(to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d)) ∘
to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d) = id,
{ intro d, esimp,
rewrite [assoc],
rewrite [-assoc (G (ε' d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
esimp, rewrite [assoc],
esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G],
rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
rewrite [respect_comp G],
rewrite [assoc,▸*,-assoc (G (ε d))],
rewrite [↑functor.compose, -respect_comp G],
rewrite [H' (G d)],
rewrite [respect_id,▸*,id_right],
apply K},
assert lem₃ : Π (d : carrier D),
(to_fun_hom G' (natural_map ε d) ∘
natural_map η' (to_fun_ob G d)) ∘
to_fun_hom G (natural_map ε' d) ∘
natural_map η (to_fun_ob G' d) = id,
{ intro d, esimp,
rewrite [assoc, -assoc (G' (ε d))],
esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
esimp, rewrite [assoc], esimp, rewrite [-assoc],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
esimp,
rewrite [respect_comp G'],
rewrite [assoc,▸*,-assoc (G' (ε' d))],
rewrite [↑functor.compose, -respect_comp G'],
rewrite [H (G' d)],
rewrite [respect_id,▸*,id_right],
apply K'},
fapply lem₁,
{ fapply functor.eq_of_pointwise_iso,
{ fapply change_natural_map,
{ exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
{ intro d, exact (G' (ε d) ∘ η' (G d))},
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
{ intro d, fconstructor,
{ exact (G (ε' d) ∘ η (G' d))},
{ exact lem₂ d },
{ exact lem₃ d }}},
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
krewrite hom_of_eq_compose_right,
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro c, esimp,
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]},
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
krewrite inv_of_eq_compose_left,
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro d, esimp,
krewrite [respect_comp],
rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
end
section
universe variables u v
parameters {C D : Precategory.{u v}} {F : C ⇒ D} {G : D ⇒ C}
(θ : hom_functor D ∘f prod_functor_prod Fᵒᵖᶠ 1 ≅ hom_functor C ∘f prod_functor_prod 1 G)
include θ
/- θ : _ ⟹[Cᵒᵖ × D ⇒ set] _-/
definition adj_unit [constructor] : 1 ⟹ G ∘f F :=
begin
fapply nat_trans.mk: esimp,
{ intro c, exact natural_map (to_hom θ) (c, F c) id},
{ intro c c' f,
let H := naturality (to_hom θ) (ID c, F f),
let K := ap10 H id,
rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right],
clear H K,
let H := naturality (to_hom θ) (f, ID (F c')),
let K := ap10 H id,
rewrite [▸* at K, respect_id at K,+id_left at K, K]}
end
definition adj_counit [constructor] : F ∘f G ⟹ 1 :=
begin
fapply nat_trans.mk: esimp,
{ intro d, exact natural_map (to_inv θ) (G d, d) id, },
{ intro d d' g,
let H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'),
let K := ap10 H id,
rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left],
clear H K,
let H := naturality (to_inv θ) (ID (G d), g),
let K := ap10 H id,
rewrite [▸* at K, respect_id at K,+id_right at K, K]}
end
theorem adj_eq_unit (c : C) (d : D) (f : F c ⟶ d)
: natural_map (to_hom θ) (c, d) f = G f ∘ adj_unit c :=
begin
esimp,
let H := naturality (to_hom θ) (ID c, f),
let K := ap10 H id,
rewrite [▸* at K, id_right at K, K, respect_id, +id_right],
end
theorem adj_eq_counit (c : C) (d : D) (g : c ⟶ G d)
: natural_map (to_inv θ) (c, d) g = adj_counit d ∘ F g :=
begin
esimp,
let H := naturality (to_inv θ) (g, ID d),
let K := ap10 H id,
rewrite [▸* at K, id_left at K, K, respect_id, +id_left],
end
definition adjoint.mk' [constructor] : F ⊣ G :=
begin
fapply adjoint.mk,
{ exact adj_unit},
{ exact adj_counit},
{ intro c, esimp, refine (adj_eq_counit c (F c) (adj_unit c))⁻¹ ⬝ _,
apply ap10 (to_left_inverse (componentwise_iso θ (c, F c)))},
{ intro d, esimp, refine (adj_eq_unit (G d) d (adj_counit d))⁻¹ ⬝ _,
apply ap10 (to_right_inverse (componentwise_iso θ (G d, d)))},
end
end
end category