2014-08-01 16:37:23 +00:00
|
|
|
import standard
|
2014-07-26 17:36:21 +00:00
|
|
|
using eq_proofs
|
|
|
|
|
|
|
|
inductive nat : Type :=
|
|
|
|
| zero : nat
|
|
|
|
| succ : nat → nat
|
|
|
|
|
|
|
|
definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y
|
|
|
|
infixl `+`:65 := add
|
|
|
|
definition mul (n m : nat) := nat_rec zero (fun m x, x + n) m
|
|
|
|
infixl `*`:75 := mul
|
|
|
|
|
|
|
|
axiom mul_zero_right (n : nat) : n * zero = zero
|
|
|
|
|
|
|
|
variable P : nat → Prop
|
|
|
|
|
|
|
|
print "==========================="
|
|
|
|
theorem tst (n : nat) (H : P (n * zero)) : P zero
|
|
|
|
:= subst (mul_zero_right _) H
|