2014-09-14 12:01:14 -07:00
|
|
|
import data.nat
|
|
|
|
open nat
|
|
|
|
|
|
|
|
inductive fn2 (A B C : Type) :=
|
|
|
|
mk : (A → C) → (B → C) → fn2 A B C
|
|
|
|
|
|
|
|
definition to_ac [coercion] {A B C : Type} (f : fn2 A B C) : A → C :=
|
|
|
|
fn2.rec (λ f g, f) f
|
|
|
|
|
|
|
|
definition to_bc [coercion] {A B C : Type} (f : fn2 A B C) : B → C :=
|
|
|
|
fn2.rec (λ f g, g) f
|
|
|
|
|
2014-10-02 16:20:52 -07:00
|
|
|
constant f : fn2 Prop nat nat
|
|
|
|
constant a : Prop
|
|
|
|
constant n : nat
|
2014-09-14 12:01:14 -07:00
|
|
|
check f a
|
|
|
|
check f n
|