lean2/library/data/list/set.lean

710 lines
33 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.set
Authors: Leonardo de Moura
Set-like operations on lists
-/
import data.list.basic data.list.comb
open nat function decidable helper_tactics eq.ops
namespace list
section erase
variable {A : Type}
variable [H : decidable_eq A]
include H
definition erase (a : A) : list A → list A
| [] := []
| (b::l) :=
match H a b with
| inl e := l
| inr n := b :: erase l
end
lemma erase_nil (a : A) : erase a [] = [] :=
rfl
lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l :=
show match H a a with | inl e := l | inr n := a :: erase a l end = l,
by rewrite decidable_eq_inl_refl
lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l :=
assume h : a ≠ b,
show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l,
by rewrite (decidable_eq_inr_neg h)
lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l)
| [] h := rfl
| [x] h := by rewrite [mem_singleton h, erase_cons_head]
| (x::y::xs) h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, erase_cons_head])
(λ anex : a ≠ x,
assert ainyxs : a ∈ y::xs, from or_resolve_right h anex,
by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem ainyxs])
lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l
| [] h := rfl
| (x::xs) h :=
assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h,
assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h,
by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs]
lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂
| [] l₂ h := absurd h !not_mem_nil
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head])
(λ anex : a ≠ x,
assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs])
lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂
| [] l₂ h := rfl
| (x::xs) l₂ h :=
by_cases
(λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h))
(λ anex : a ≠ x,
assert nainxs : a ∉ xs, from not_mem_of_not_mem h,
by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs])
lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l
| [] := λ x xine, xine
| (x::xs) := λ y xine,
by_cases
(λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine))
(λ anex : a ≠ x,
assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine,
assert subxs : erase a xs ⊆ xs, from erase_sub xs,
by_cases
(λ yeqx : y = x, by rewrite yeqx; apply mem_cons)
(λ ynex : y ≠ x,
assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe,
assert yinxs : y ∈ xs, from subxs yine,
or.inr yinxs))
theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l
| [] n i := absurd i !not_mem_nil
| (c::l) n i := by_cases
(λ beqc : b = c,
assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i)
(λ aeqc : a = c, absurd aeqc (beqc ▸ n))
(λ ainl : a ∈ l, ainl),
by rewrite [beqc, erase_cons_head]; exact ainl)
(λ bnec : b ≠ c, by_cases
(λ aeqc : a = c,
assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons,
by rewrite [erase_cons_tail _ bnec]; exact aux)
(λ anec : a ≠ c,
have ainl : a ∈ l, from mem_of_ne_of_mem anec i,
have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl,
assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel,
by rewrite [erase_cons_tail _ bnec]; exact aux)) --
theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l
| [] i := absurd i !not_mem_nil
| (c::l) i := by_cases
(λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i))
(λ bnec : b ≠ c,
have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons)
(λ ainel : a ∈ erase b l,
have ainl : a ∈ l, from mem_of_mem_erase ainel,
mem_cons_of_mem _ ainl))
theorem all_erase_of_all {p : A → Prop} (a : A) : ∀ {l}, all l p → all (erase a l) p
| [] h := by rewrite [erase_nil]; exact h
| (b::l) h :=
assert h₁ : all l p, from all_of_all_cons h,
have h₂ : all (erase a l) p, from all_erase_of_all h₁,
have pb : p b, from of_all_cons h,
assert h₃ : all (b :: erase a l) p, from all_cons_of_all pb h₂,
by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact h₁)
(λ aneb : a ≠ b, by rewrite [erase_cons_tail _ aneb]; exact h₃)
end erase
/- disjoint -/
section disjoint
variable {A : Type}
definition disjoint (l₁ l₂ : list A) : Prop := ∀ a, (a ∈ l₁ → a ∉ l₂) ∧ (a ∈ l₂ → a ∉ l₁)
lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ :=
λ d a, and.elim_left (d a)
lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ :=
λ d a, and.elim_right (d a)
lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ :=
λ d a, and.intro
(λ ainl₂ : a ∈ l₂, disjoint_right d ainl₂)
(λ ainl₁ : a ∈ l₁, disjoint_left d ainl₁)
lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ :=
λ d x, and.intro
(λ xinl₁ : x ∈ l₁, disjoint_left d (or.inr xinl₁))
(λ xinl₂ : x ∈ l₂,
have nxinal₁ : x ∉ a::l₁, from disjoint_right d xinl₂,
not_mem_of_not_mem nxinal₁)
lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ :=
λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d))
lemma disjoint_nil_left (l : list A) : disjoint [] l :=
λ a, and.intro
(λ ab : a ∈ nil, absurd ab !not_mem_nil)
(λ ainl : a ∈ l, !not_mem_nil)
lemma disjoint_nil_right (l : list A) : disjoint l [] :=
disjoint.comm (disjoint_nil_left l)
lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ :=
λ nainl₂ d x, and.intro
(λ xinal₁ : x ∈ a::l₁, or.elim (eq_or_mem_of_mem_cons xinal₁)
(λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂)
(λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁))
(λ (xinl₂ : x ∈ l₂) (xinal₁ : x ∈ a::l₁), or.elim (eq_or_mem_of_mem_cons xinal₁)
(λ xeqa : x = a, absurd (xeqa ▸ xinl₂) nainl₂)
(λ xinl₁ : x ∈ l₁, absurd xinl₁ (disjoint_right d xinl₂)))
lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l
| [] l₂ l d := disjoint_nil_left l
| (x::xs) l₂ l d :=
have nxinl : x ∉ l, from disjoint_left d !mem_cons,
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁,
disjoint_cons_of_not_mem_of_disjoint nxinl d₂
lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l
| [] l₂ l d := d
| (x::xs) l₂ l d :=
have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d,
disjoint_of_disjoint_append_left_right d₁
lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d))
lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ :=
λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d))
end disjoint
/- no duplicates predicate -/
inductive nodup {A : Type} : list A → Prop :=
| ndnil : nodup []
| ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l)
section nodup
open nodup
variables {A B : Type}
theorem nodup_nil : @nodup A [] :=
ndnil
theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) :=
λ i n, ndcons i n
theorem nodup_singleton (a : A) : nodup [a] :=
nodup_cons !not_mem_nil nodup_nil
theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l
| a xs (ndcons i n) := n
theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l
| a xs (ndcons i n) := i
theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁
| [] l₂ n := nodup_nil
| (x::xs) l₂ n :=
have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n),
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n,
have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂,
nodup_cons nxinxs ndxs
theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂
| [] l₂ n := n
| (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n)
theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂
| [] l₂ d := disjoint_nil_left l₂
| (x::xs) l₂ d :=
have d₁ : nodup (x::(xs++l₂)), from d,
have d₂ : nodup (xs++l₂), from nodup_of_nodup_cons d₁,
have nxin : x ∉ xs++l₂, from not_mem_of_nodup_cons d₁,
have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right nxin,
have dsj : disjoint xs l₂, from disjoint_of_nodup_append d₂,
(λ a, and.intro
(λ ainxxs : a ∈ x::xs,
or.elim (eq_or_mem_of_mem_cons ainxxs)
(λ aeqx : a = x, aeqx⁻¹ ▸ nxinl₂)
(λ ainxs : a ∈ xs, disjoint_left dsj ainxs))
(λ ainl₂ : a ∈ l₂,
have nainxs : a ∉ xs, from disjoint_right dsj ainl₂,
assume ain : a ∈ x::xs, or.elim (eq_or_mem_of_mem_cons ain)
(λ aeqx : a = x, absurd (aeqx ▸ ainl₂) nxinl₂)
(λ ainxs : a ∈ xs, absurd ainxs nainxs)))
theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂)
| [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂
| (x::xs) l₂ d₁ d₂ dsj :=
have dsj₁ : disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj,
have ndxs : nodup xs, from nodup_of_nodup_cons d₁,
have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ dsj₁,
have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁,
have nxinl₂ : x ∉ l₂, from disjoint_left dsj !mem_cons,
have nxinxsl₂ : x ∉ xs++l₂, from not_mem_append nxinxs nxinl₂,
nodup_cons nxinxsl₂ ndxsl₂
theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) :=
have d₁ : nodup l₁, from nodup_of_nodup_append_left d,
have d₂ : nodup l₂, from nodup_of_nodup_append_right d,
have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d,
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj)
theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) :=
have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d,
have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁,
have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂,
have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁,
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain,
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain,
nodup_cons (not_mem_append nain₁ nain₂) d₃
theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) :=
have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d,
have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d,
have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁,
have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁,
have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁,
have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain,
have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain,
have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃,
have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)),
nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂
theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l)
| [] n := begin rewrite [map_nil], apply nodup_nil end
| (x::xs) n :=
assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n,
assert ndxs : nodup xs, from nodup_of_nodup_cons n,
assert ndmfxs : nodup (map f xs), from nodup_map ndxs,
assert nfxinm : f x ∉ map f xs, from
λ ab : f x ∈ map f xs,
obtain (finv : B → A) (isinv : finv ∘ f = id), from inj,
assert finvfxin : finv (f x) ∈ map finv (map f xs), from mem_map finv ab,
assert xinxs : x ∈ xs,
begin
rewrite [map_map at finvfxin, isinv at finvfxin, left_inv_eq isinv at finvfxin],
rewrite [map_id at finvfxin],
exact finvfxin
end,
absurd xinxs nxinxs,
nodup_cons nfxinm ndmfxs
theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l)
| [] n := nodup_nil
| (b::l) n := by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n))
(λ aneb : a ≠ b,
have nbinl : b ∉ l, from not_mem_of_nodup_cons n,
have ndl : nodup l, from nodup_of_nodup_cons n,
have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl,
have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl,
assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal,
by rewrite [erase_cons_tail _ aneb]; exact aux)
theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l
| [] n := !not_mem_nil
| (b::l) n :=
have ndl : nodup l, from nodup_of_nodup_cons n,
have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl,
assert nbinl : b ∉ l, from not_mem_of_nodup_cons n,
by_cases
(λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl)
(λ aneb : a ≠ b,
assert aux : a ∉ b :: erase a l, from
assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal)
(λ aeqb : a = b, absurd aeqb aneb)
(λ aineal : a ∈ erase a l, absurd aineal naineal),
by rewrite [erase_cons_tail _ aneb]; exact aux)
definition erase_dup [H : decidable_eq A] : list A → list A
| [] := []
| (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs
theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = []
theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l :=
assume ainl, calc
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
... = erase_dup l : if_pos ainl
theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l :=
assume nainl, calc
erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl
... = a :: erase_dup l : if_neg nainl
theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l
| [] h := absurd h !not_mem_nil
| (b::l) h := by_cases
(λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl))
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl)))
(λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons)
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl))))
theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l
| [] h := by rewrite [erase_dup_nil at h]; exact h
| (b::l) h := by_cases
(λ binl : b ∈ l,
have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h,
or.inr (mem_of_mem_erase_dup h₁))
(λ nbinl : b ∉ l,
have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h,
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqb : a = b, by rewrite aeqb; exact !mem_cons)
(λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel)))
theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l)
| [] := by rewrite erase_dup_nil; exact nodup_nil
| (a::l) := by_cases
(λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l))
(λ nainl : a ∉ l,
assert r : nodup (erase_dup l), from nodup_erase_dup l,
assert nin : a ∉ erase_dup l, from
assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl,
by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r))
theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l
| [] d := rfl
| (a::l) d :=
assert nainl : a ∉ l, from not_mem_of_nodup_cons d,
assert dl : nodup l, from nodup_of_nodup_cons d,
by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl]
end nodup
/- upto -/
definition upto : nat → list nat
| 0 := []
| (n+1) := n :: upto n
theorem upto_nil : upto 0 = nil
theorem upto_succ (n : nat) : upto (succ n) = n :: upto n
theorem length_upto : ∀ n, length (upto n) = n
| 0 := rfl
| (succ n) := by rewrite [upto_succ, length_cons, length_upto]
theorem upto_less : ∀ n, all (upto n) (λ i, i < n)
| 0 := trivial
| (succ n) :=
have alln : all (upto n) (λ i, i < n), from upto_less n,
all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h))
theorem nodup_upto : ∀ n, nodup (upto n)
| 0 := nodup_nil
| (n+1) :=
have d : nodup (upto n), from nodup_upto n,
have n : n ∉ upto n, from
assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (lt.irrefl n),
nodup_cons n d
theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n :=
assume i, of_mem_of_all i (upto_less n)
theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) :=
assume i, mem_cons_of_mem _ i
theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n
| 0 i h := absurd h !not_lt_zero
| (succ n) i h := or.elim (eq_or_lt_of_le h)
(λ ieqn : i = n, by rewrite [ieqn, upto_succ]; exact !mem_cons)
(λ iltn : i < n, mem_upto_succ_of_mem_upto (mem_upto_of_lt iltn))
/- union -/
section union
variable {A : Type}
variable [H : decidable_eq A]
include H
definition union : list A → list A → list A
| [] l₂ := l₂
| (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂
theorem nil_union (l : list A) : union [] l = l
theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ :=
take l₁, assume ainl₂, calc
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
... = union l₁ l₂ : if_pos ainl₂
theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ :=
take l₁, assume nainl₂, calc
union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl
... = a :: union l₁ l₂ : if_neg nainl₂
theorem union_nil : ∀ (l : list A), union l [] = l
| [] := !nil_union
| (a::l) := by rewrite [union_cons_of_not_mem _ !not_mem_nil, union_nil]
theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ a ∈ l₂
| [] l₂ a ainl₂ := by rewrite nil_union at ainl₂; exact (or.inr (ainl₂))
| (b::l₁) l₂ a ainbl₁l₂ := by_cases
(λ binl₂ : b ∈ l₂,
have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂,
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
(λ ainl₂, or.inr ainl₂))
(λ nbinl₂ : b ∉ l₂,
have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂,
or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂)
(λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons))
(λ ainl₁l₂,
or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁))
(λ ainl₂, or.inr ainl₂)))
theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂
| [] l₂ h := by rewrite nil_union; exact h
| (b::l₁) l₂ h := by_cases
(λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h))
(λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h)))
theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂
| [] l₂ h := absurd h !not_mem_nil
| (b::l₁) l₂ h := by_cases
(λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b,
by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂))
(λ ainl₁ : a ∈ l₁,
by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁)))
(λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h)
(λ aeqb : a = b,
by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons)
(λ ainl₁ : a ∈ l₁,
by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁))))
theorem mem_union_cons (a : A) (l₁ : list A) (l₂ : list A) : a ∈ union (a::l₁) l₂ :=
by_cases
(λ ainl₂ : a ∈ l₂, mem_union_right _ ainl₂)
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact !mem_cons)
theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂)
| [] l₂ n₁ nl₂ := by rewrite nil_union; exact nl₂
| (a::l₁) l₂ nal₁ nl₂ :=
assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁,
assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂,
by_cases
(λ ainl₂ : a ∈ l₂,
by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂)
(λ nainl₂ : a ∉ l₂,
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁,
assert nainl₁l₂ : a ∉ union l₁ l₂, from
assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂)
(λ ainl₁, absurd ainl₁ nainl₁)
(λ ainl₂, absurd ainl₂ nainl₂),
by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂))
theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂
| [] l₂ d := rfl
| (a::l₁) l₂ d :=
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d,
by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁]
theorem all_union {p : A → Prop} : ∀ {l₁ l₂ : list A}, all l₁ p → all l₂ p → all (union l₁ l₂) p
| [] l₂ h₁ h₂ := h₂
| (a::l₁) l₂ h₁ h₂ :=
have h₁' : all l₁ p, from all_of_all_cons h₁,
have pa : p a, from of_all_cons h₁,
assert au : all (union l₁ l₂) p, from all_union h₁' h₂,
assert au' : all (a :: union l₁ l₂) p, from all_cons_of_all pa au,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂]; exact au)
(λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact au')
theorem all_of_all_union_left {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₁ p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
have ain : a ∈ union (a::l₁) l₂, from !mem_union_cons,
have pa : p a, from of_mem_of_all ain h,
by_cases
(λ ainl₂ : a ∈ l₂,
have al₁l₂ : all (union l₁ l₂) p, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact h,
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
all_cons_of_all pa al₁)
(λ nainl₂ : a ∉ l₂,
have aal₁l₂ : all (a::union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
have al₁l₂ : all (union l₁ l₂) p, from all_of_all_cons aal₁l₂,
have al₁ : all l₁ p, from all_of_all_union_left al₁l₂,
all_cons_of_all pa al₁)
theorem all_of_all_union_right {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₂ p
| [] l₂ h := by rewrite [nil_union at h]; exact h
| (a::l₁) l₂ h := by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact (all_of_all_union_right h))
(λ nainl₂ : a ∉ l₂,
have h₁ : all (a :: union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h,
all_of_all_union_right (all_of_all_cons h₁))
variable {B : Type}
theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
: foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ :=
by rewrite [union_eq_append d, foldl_append]
theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂)
: foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ :=
by rewrite [union_eq_append d, foldr_append]
end union
/- insert -/
section insert
variable {A : Type}
variable [H : decidable_eq A]
include H
definition insert (a : A) (l : list A) : list A :=
if a ∈ l then l else a::l
theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l :=
assume ainl, if_pos ainl
theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l :=
assume nainl, if_neg nainl
theorem mem_insert (a : A) (l : list A) : a ∈ insert a l :=
by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons)
theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l :=
assume ainl, by_cases
(λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl)
(λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl))
theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) :=
assume n, by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n))
theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl]
theorem all_insert_of_all {p : A → Prop} {a : A} {l} : p a → all l p → all (insert a l) p :=
assume h₁ h₂, by_cases
(λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact h₂)
(λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (all_cons_of_all h₁ h₂))
end insert
/- intersection -/
section intersection
variable {A : Type}
variable [H : decidable_eq A]
include H
definition intersection : list A → list A → list A
| [] l₂ := []
| (a::l₁) l₂ := if a ∈ l₂ then a :: intersection l₁ l₂ else intersection l₁ l₂
theorem intersection_nil (l : list A) : intersection [] l = []
theorem intersection_cons_of_mem {a : A} (l₁ : list A) {l₂} : a ∈ l₂ → intersection (a::l₁) l₂ = a :: intersection l₁ l₂ :=
assume i, if_pos i
theorem intersection_cons_of_not_mem {a : A} (l₁ : list A) {l₂} : a ∉ l₂ → intersection (a::l₁) l₂ = intersection l₁ l₂ :=
assume i, if_neg i
theorem mem_of_mem_intersection_left : ∀ {l₁ l₂} {a : A}, a ∈ intersection l₁ l₂ → a ∈ l₁
| [] l₂ a i := absurd i !not_mem_nil
| (b::l₁) l₂ a i := by_cases
(λ binl₂ : b ∈ l₂,
have aux : a ∈ b :: intersection l₁ l₂, by rewrite [intersection_cons_of_mem _ binl₂ at i]; exact i,
or.elim (eq_or_mem_of_mem_cons aux)
(λ aeqb : a = b, by rewrite [aeqb]; exact !mem_cons)
(λ aini, mem_cons_of_mem _ (mem_of_mem_intersection_left aini)))
(λ nbinl₂ : b ∉ l₂,
have ainl₁ : a ∈ l₁, by rewrite [intersection_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_intersection_left i),
mem_cons_of_mem _ ainl₁)
theorem mem_of_mem_intersection_right : ∀ {l₁ l₂} {a : A}, a ∈ intersection l₁ l₂ → a ∈ l₂
| [] l₂ a i := absurd i !not_mem_nil
| (b::l₁) l₂ a i := by_cases
(λ binl₂ : b ∈ l₂,
have aux : a ∈ b :: intersection l₁ l₂, by rewrite [intersection_cons_of_mem _ binl₂ at i]; exact i,
or.elim (eq_or_mem_of_mem_cons aux)
(λ aeqb : a = b, by rewrite [aeqb]; exact binl₂)
(λ aini : a ∈ intersection l₁ l₂, mem_of_mem_intersection_right aini))
(λ nbinl₂ : b ∉ l₂,
by rewrite [intersection_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_intersection_right i))
theorem mem_intersection_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ intersection l₁ l₂
| [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil
| (b::l₁) l₂ a i₁ i₂ := by_cases
(λ binl₂ : b ∈ l₂,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqb : a = b,
by rewrite [intersection_cons_of_mem _ binl₂, aeqb]; exact !mem_cons)
(λ ainl₁ : a ∈ l₁,
by rewrite [intersection_cons_of_mem _ binl₂];
apply mem_cons_of_mem;
exact (mem_intersection_of_mem_of_mem ainl₁ i₂)))
(λ nbinl₂ : b ∉ l₂,
or.elim (eq_or_mem_of_mem_cons i₁)
(λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂)
(λ ainl₁ : a ∈ l₁,
by rewrite [intersection_cons_of_not_mem _ nbinl₂]; exact (mem_intersection_of_mem_of_mem ainl₁ i₂)))
theorem nodup_intersection_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (intersection l₁ l₂)
| [] l₂ d := nodup_nil
| (a::l₁) l₂ d :=
have d₁ : nodup l₁, from nodup_of_nodup_cons d,
assert d₂ : nodup (intersection l₁ l₂), from nodup_intersection_of_nodup _ d₁,
have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons d,
assert naini : a ∉ intersection l₁ l₂, from λ i, absurd (mem_of_mem_intersection_left i) nainl₁,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [intersection_cons_of_mem _ ainl₂]; exact (nodup_cons naini d₂))
(λ nainl₂ : a ∉ l₂, by rewrite [intersection_cons_of_not_mem _ nainl₂]; exact d₂)
theorem intersection_eq_nil_of_disjoint : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → intersection l₁ l₂ = []
| [] l₂ d := rfl
| (a::l₁) l₂ d :=
assert aux_eq : intersection l₁ l₂ = [], from intersection_eq_nil_of_disjoint (disjoint_of_disjoint_cons_left d),
assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons,
by rewrite [intersection_cons_of_not_mem _ nainl₂, aux_eq]
theorem all_intersection_of_all_left {p : A → Prop} : ∀ {l₁} (l₂), all l₁ p → all (intersection l₁ l₂) p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
have h₁ : all l₁ p, from all_of_all_cons h,
assert h₂ : all (intersection l₁ l₂) p, from all_intersection_of_all_left _ h₁,
have pa : p a, from of_all_cons h,
assert h₃ : all (a :: intersection l₁ l₂) p, from all_cons_of_all pa h₂,
by_cases
(λ ainl₂ : a ∈ l₂, by rewrite [intersection_cons_of_mem _ ainl₂]; exact h₃)
(λ nainl₂ : a ∉ l₂, by rewrite [intersection_cons_of_not_mem _ nainl₂]; exact h₂)
theorem all_intersection_of_all_right {p : A → Prop} : ∀ (l₁) {l₂}, all l₂ p → all (intersection l₁ l₂) p
| [] l₂ h := trivial
| (a::l₁) l₂ h :=
assert h₁ : all (intersection l₁ l₂) p, from all_intersection_of_all_right _ h,
by_cases
(λ ainl₂ : a ∈ l₂,
have pa : p a, from of_mem_of_all ainl₂ h,
assert h₂ : all (a :: intersection l₁ l₂) p, from all_cons_of_all pa h₁,
by rewrite [intersection_cons_of_mem _ ainl₂]; exact h₂)
(λ nainl₂ : a ∉ l₂, by rewrite [intersection_cons_of_not_mem _ nainl₂]; exact h₁)
end intersection
end list