lean2/hott/homotopy/circle.hlean

276 lines
9.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the circle
-/
import .sphere
import types.bool types.int.hott types.equiv
import algebra.homotopy_group algebra.hott
open eq susp bool sphere_index is_equiv equiv equiv.ops is_trunc pi
definition circle : Type₀ := sphere 1
namespace circle
notation `S¹` := circle
definition base1 : circle := !north
definition base2 : circle := !south
definition seg1 : base1 = base2 := merid !north
definition seg2 : base1 = base2 := merid !south
definition base : circle := base1
definition loop : base = base := seg2 ⬝ seg1⁻¹
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : circle) : P x :=
begin
induction x with b,
{ exact Pb1},
{ exact Pb2},
{ esimp at *, induction b with y,
{ exact Ps1},
{ exact Ps2},
{ cases y}},
end
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : P x :=
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
: apdo (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
!rec_merid
theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
: apdo (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
!rec_merid
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P :=
rec2 Pb1 Pb2 (pathover_of_eq Ps1) (pathover_of_eq Ps2) x
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
elim2 Pb1 Pb2 Ps1 Ps2 x
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg1),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim2,rec2_seg1],
end
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg2),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim2,rec2_seg2],
end
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type :=
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: Type :=
elim2_type Pb1 Pb2 Ps1 Ps2 x
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase)
(x : circle) : P x :=
begin
fapply (rec2_on x),
{ exact Pbase},
{ exact (transport P seg1 Pbase)},
{ apply pathover_tr},
{ apply pathover_tr_of_pathover, exact Ploop}
end
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
(Ploop : Pbase =[loop] Pbase) : P x :=
circle.rec Pbase Ploop x
theorem rec_loop_helper {A : Type} (P : A → Type)
{x y z : A} {p : x = y} {p' : z = y} {u : P x} {v : P z} (q : u =[p ⬝ p'⁻¹] v) :
pathover_tr_of_pathover q ⬝o !pathover_tr⁻¹ᵒ = q :=
by cases p'; cases q; exact idp
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
eq.rec_on p idp
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) :
apdo (circle.rec Pbase Ploop) loop = Ploop :=
begin
rewrite [↑loop,apdo_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg2,apdo_inv,rec2_seg1],
apply rec_loop_helper
end
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
(x : circle) : P :=
circle.rec Pbase (pathover_of_eq Ploop) x
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
(Ploop : Pbase = Pbase) : P :=
circle.elim Pbase Ploop x
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
ap (circle.elim Pbase Ploop) loop = Ploop :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant loop),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑circle.elim,rec_loop],
end
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
(x : circle) : Type :=
circle.elim Pbase (ua Ploop) x
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
(Ploop : Pbase ≃ Pbase) : Type :=
circle.elim_type Pbase Ploop x
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (circle.elim_type Pbase Ploop) loop = Ploop :=
by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,circle.elim_loop];apply cast_ua_fn
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
by rewrite [tr_inv_fn]; apply inv_eq_inv; apply elim_type_loop
end circle
attribute circle.base1 circle.base2 circle.base [constructor]
attribute circle.rec2 circle.elim2 [unfold 6] [recursor 6]
attribute circle.elim2_type [unfold 5]
attribute circle.rec2_on circle.elim2_on [unfold 2]
attribute circle.elim2_type [unfold 1]
attribute circle.rec circle.elim [unfold 4] [recursor 4]
attribute circle.elim_type [unfold 3]
attribute circle.rec_on circle.elim_on [unfold 2]
attribute circle.elim_type_on [unfold 1]
namespace circle
definition pointed_circle [instance] [constructor] : pointed circle :=
pointed.mk base
definition Circle [constructor] : Type* := pointed.mk' circle
notation `S¹.` := Circle
2015-05-01 00:45:31 +00:00
definition loop_neq_idp : loop ≠ idp :=
assume H : loop = idp,
have H2 : Π{A : Type₁} {a : A} {p : a = a}, p = idp,
2015-05-01 00:45:31 +00:00
from λA a p, calc
p = ap (circle.elim a p) loop : elim_loop
... = ap (circle.elim a p) (refl base) : by rewrite H,
eq_bnot_ne_idp H2
2015-05-01 00:45:31 +00:00
definition nonidp (x : circle) : x = x :=
begin
induction x,
{ exact loop},
{ apply concato_eq, apply pathover_eq_lr, rewrite [con.left_inv,idp_con]}
end
2015-05-01 00:45:31 +00:00
definition nonidp_neq_idp : nonidp ≠ (λx, idp) :=
assume H : nonidp = λx, idp,
have H2 : loop = idp, from apd10 H base,
absurd H2 loop_neq_idp
open int
protected definition code (x : circle) : Type₀ :=
circle.elim_type_on x equiv_succ
definition transport_code_loop (a : ) : transport circle.code loop a = succ a :=
ap10 !elim_type_loop a
definition transport_code_loop_inv (a : )
: transport circle.code loop⁻¹ a = pred a :=
ap10 !elim_type_loop_inv a
protected definition encode {x : circle} (p : base = x) : circle.code x :=
transport circle.code p (of_num 0) -- why is the explicit coercion needed here?
protected definition decode {x : circle} : circle.code x → base = x :=
begin
induction x,
{ exact power loop},
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
2015-05-27 23:38:31 +00:00
rewrite [power_con,transport_code_loop]}
end
--remove this theorem after #484
theorem encode_decode {x : circle} : Π(a : circle.code x), circle.encode (circle.decode a) = a :=
begin
unfold circle.decode, induction x,
{ intro a, esimp [base,base1], --simplify after #587
apply rec_nat_on a,
{ exact idp},
{ intros n p,
apply transport (λ(y : base = base), transport circle.code y _ = _), apply power_con,
rewrite [▸*,con_tr, transport_code_loop, ↑[circle.encode,circle.code] at p], krewrite p},
{ intros n p,
apply transport (λ(y : base = base), transport circle.code y _ = _),
{ exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹},
rewrite [▸*,@con_tr _ circle.code,transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ]}},
{ apply pathover_of_tr_eq, apply eq_of_homotopy, intro a, apply @is_hset.elim,
esimp [circle.code,base,base1], exact _}
--simplify after #587
end
definition circle_eq_equiv [constructor] (x : circle) : (base = x) ≃ circle.code x :=
begin
fapply equiv.MK,
{ exact circle.encode},
{ exact circle.decode},
{ exact circle.encode_decode},
{ intro p, cases p, exact idp},
end
definition base_eq_base_equiv [constructor] : base = base ≃ :=
circle_eq_equiv base
definition decode_add (a b : ) :
base_eq_base_equiv⁻¹ a ⬝ base_eq_base_equiv⁻¹ b = base_eq_base_equiv⁻¹ (a + b) :=
!power_con_power
definition encode_con (p q : base = base) : circle.encode (p ⬝ q) = circle.encode p + circle.encode q :=
preserve_binary_of_inv_preserve base_eq_base_equiv concat add decode_add p q
--the carrier of π₁(S¹) is the set-truncation of base = base.
open core algebra trunc equiv.ops
definition fg_carrier_equiv_int : π[1](S¹.) ≃ :=
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e !trunc_equiv
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
definition fundamental_group_of_circle : π₁(S¹.) = group_integers :=
begin
apply (Group_eq fg_carrier_equiv_int),
intros g h,
induction g with g', induction h with h',
apply encode_con,
end
definition eq_equiv_Z (x : S¹) : x = x ≃ :=
begin
induction x,
{ apply base_eq_base_equiv},
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
let H := eq_of_square (square_of_pathover q),
rewrite con_comm_base at H,
let H' := cancel_left H,
induction H', reflexivity}
end
end circle