lean2/library/data/finset/bigops.lean

99 lines
4.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Finite unions and intersections on finsets.
Note: for the moment we only do unions. We need to generalize bigops for intersections.
-/
import data.finset.comb algebra.group_bigops
open list
namespace finset
variables {A B : Type} [deceqA : decidable_eq A] [deceqB : decidable_eq B]
/- Unionl and Union -/
section union
definition to_comm_monoid_Union (B : Type) [deceqB : decidable_eq B] :
algebra.comm_monoid (finset B) :=
⦃ algebra.comm_monoid,
mul := union,
mul_assoc := union.assoc,
one := empty,
mul_one := union_empty,
one_mul := empty_union,
mul_comm := union.comm
open [classes] algebra
local attribute finset.to_comm_monoid_Union [instance]
include deceqB
definition Unionl (l : list A) (f : A → finset B) : finset B := algebra.Prodl l f
notation `` binders `←` l, r:(scoped f, Unionl l f) := r
definition Union (s : finset A) (f : A → finset B) : finset B := algebra.Prod s f
notation `` binders `∈` s, r:(scoped f, finset.Union s f) := r
theorem Unionl_nil (f : A → finset B) : Unionl [] f = ∅ := algebra.Prodl_nil f
theorem Unionl_cons (f : A → finset B) (a : A) (l : list A) :
Unionl (a::l) f = f a Unionl l f := algebra.Prodl_cons f a l
theorem Unionl_append (l₁ l₂ : list A) (f : A → finset B) :
Unionl (l₁++l₂) f = Unionl l₁ f Unionl l₂ f := algebra.Prodl_append l₁ l₂ f
theorem Unionl_mul (l : list A) (f g : A → finset B) :
Unionl l (λx, f x g x) = Unionl l f Unionl l g := algebra.Prodl_mul l f g
section deceqA
include deceqA
theorem Unionl_insert_of_mem (f : A → finset B) {a : A} {l : list A} (H : a ∈ l) :
Unionl (list.insert a l) f = Unionl l f := algebra.Prodl_insert_of_mem f H
theorem Unionl_insert_of_not_mem (f : A → finset B) {a : A} {l : list A} (H : a ∉ l) :
Unionl (list.insert a l) f = f a Unionl l f := algebra.Prodl_insert_of_not_mem f H
theorem Unionl_union {l₁ l₂ : list A} (f : A → finset B) (d : list.disjoint l₁ l₂) :
Unionl (list.union l₁ l₂) f = Unionl l₁ f Unionl l₂ f := algebra.Prodl_union f d
theorem Unionl_empty (l : list A) : Unionl l (λ x, ∅) = ∅ := algebra.Prodl_one l
end deceqA
theorem Union_empty (f : A → finset B) : Union ∅ f = ∅ := algebra.Prod_empty f
theorem Union_mul (s : finset A) (f g : A → finset B) :
Union s (λx, f x g x) = Union s f Union s g := algebra.Prod_mul s f g
section deceqA
include deceqA
theorem Union_insert_of_mem (f : A → finset B) {a : A} {s : finset A} (H : a ∈ s) :
Union (insert a s) f = Union s f := algebra.Prod_insert_of_mem f H
theorem Union_insert_of_not_mem (f : A → finset B) {a : A} {s : finset A} (H : a ∉ s) :
Union (insert a s) f = f a Union s f := algebra.Prod_insert_of_not_mem f H
theorem Union_union (f : A → finset B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
Union (s₁ s₂) f = Union s₁ f Union s₂ f := algebra.Prod_union f disj
theorem Union_ext {s : finset A} {f g : A → finset B} (H : ∀x, x ∈ s → f x = g x) :
Union s f = Union s g := algebra.Prod_ext H
theorem Union_empty' (s : finset A) : Union s (λ x, ∅) = ∅ := algebra.Prod_one s
-- this will eventually be an instance of something more general
theorem inter_Union (s : finset B) (t : finset A) (f : A → finset B) :
s ∩ ( x ∈ t, f x) = ( x ∈ t, s ∩ f x) :=
finset.induction_on t
(by rewrite [*Union_empty, inter_empty])
(take s' x, assume H : x ∉ s',
assume IH,
by rewrite [*Union_insert_of_not_mem _ H, inter.distrib_left, IH])
theorem mem_Union_iff (s : finset A) (f : A → finset B) (b : B) :
b ∈ ( x ∈ s, f x) ↔ (∃ x, x ∈ s ∧ b ∈ f x ) :=
finset.induction_on s
(by rewrite [exists_mem_empty_eq])
(take s' a, assume H : a ∉ s', assume IH,
by rewrite [Union_insert_of_not_mem _ H, mem_union_eq, IH, exists_mem_insert_eq])
theorem mem_Union_eq (s : finset A) (f : A → finset B) (b : B) :
b ∈ ( x ∈ s, f x) = (∃ x, x ∈ s ∧ b ∈ f x ) :=
propext !mem_Union_iff
end deceqA
end union
end finset