lean2/hott/algebra/category/constructions.hlean

61 lines
1.8 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.category.constructions
Authors: Floris van Doorn
-/
import .basic algebra.precategory.constructions
--open eq eq.ops equiv category.ops iso category is_trunc
open eq category equiv iso is_equiv category.ops is_trunc iso.iso
--TODO: MOVE THIS
namespace equiv
variables {A B : Type}
protected definition eq_mk' {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
: equiv.mk f H = equiv.mk f' H' :=
apD011 equiv.mk p sorry --!is_hprop.elim
protected definition eq_mk {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
by (cases f; cases f'; apply (equiv.eq_mk' p))
end equiv
namespace category
namespace set
definition equiv_equiv_iso (A B : Precategory_hset) : (A ≃ B) ≃ (A ≅ B) :=
equiv.MK (λf, iso.MK (to_fun f)
(equiv.to_inv f)
(eq_of_homotopy (sect (to_fun f)))
(eq_of_homotopy (retr (to_fun f))))
(λf, equiv.MK (to_hom f)
(iso.to_inv f)
(ap10 (right_inverse (to_hom f)))
(ap10 (left_inverse (to_hom f))))
(λf, iso.eq_mk idp)
(λf, equiv.eq_mk idp)
definition equiv_eq_iso (A B : Precategory_hset) : (A ≃ B) = (A ≅ B) :=
ua !equiv_equiv_iso
definition is_univalent (A B : Precategory_hset) : is_equiv (@iso_of_eq _ _ A B) :=
sorry
end set
definition category_hset [reducible] [instance] : category hset :=
category.mk' hset precategory_hset set.is_univalent
definition Category_hset [reducible] : Category :=
Category.mk hset category_hset
namespace ops
abbreviation set := Category_hset
end ops
end category