lean2/library/data/nat/basic.lean

324 lines
10 KiB
Text
Raw Normal View History

--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn, Leonardo de Moura
-- Basic operations on the natural numbers.
import logic.connectives data.num algebra.binary
open eq.ops binary
namespace nat
definition addl (x y : ) : :=
nat.rec y (λ n r, succ r) x
infix `⊕`:65 := addl
theorem addl.succ_right (n m : ) : n ⊕ succ m = succ (n ⊕ m) :=
nat.induction_on n
rfl
(λ n₁ ih, calc
succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl
... = succ (succ (n₁ ⊕ m)) : ih
... = succ (succ n₁ ⊕ m) : rfl)
theorem add_eq_addl (x : ) : ∀y, x + y = x ⊕ y :=
nat.induction_on x
(λ y, nat.induction_on y
rfl
(λ y₁ ih, calc
zero + succ y₁ = succ (zero + y₁) : rfl
... = succ (zero ⊕ y₁) : {ih}
... = zero ⊕ (succ y₁) : rfl))
(λ x₁ ih₁ y, nat.induction_on y
(calc
succ x₁ + zero = succ (x₁ + zero) : rfl
... = succ (x₁ ⊕ zero) : {ih₁ zero}
... = succ x₁ ⊕ zero : rfl)
(λ y₁ ih₂, calc
succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl
... = succ (succ x₁ ⊕ y₁) : {ih₂}
... = succ x₁ ⊕ succ y₁ : addl.succ_right))
-- Successor and predecessor
-- -------------------------
theorem succ_ne_zero (n : ) : succ n ≠ 0 :=
assume H, no_confusion H
-- add_rewrite succ_ne_zero
theorem pred.zero : pred 0 = 0 :=
rfl
theorem pred.succ (n : ) : pred (succ n) = n :=
rfl
irreducible pred
theorem zero_or_succ_pred (n : ) : n = 0 n = succ (pred n) :=
induction_on n
(or.inl rfl)
(take m IH, or.inr
(show succ m = succ (pred (succ m)), from congr_arg succ !pred.succ⁻¹))
theorem zero_or_exists_succ (n : ) : n = 0 ∃k, n = succ k :=
or_of_or_of_imp_of_imp (zero_or_succ_pred n) (assume H, H)
(assume H : n = succ (pred n), exists.intro (pred n) H)
theorem case {P : → Prop} (n : ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
induction_on n H1 (take m IH, H2 m)
theorem succ.inj {n m : } (H : succ n = succ m) : n = m :=
no_confusion H (λe, e)
theorem succ.ne_self {n : } : succ n ≠ n :=
induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from !succ_ne_zero,
absurd H ne)
(take k IH H, IH (succ.inj H))
theorem discriminate {B : Prop} {n : } (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
or.elim (zero_or_succ_pred n)
(take H3 : n = 0, H1 H3)
(take H3 : n = succ (pred n), H2 (pred n) H3)
theorem two_step_induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
have stronger : P a ∧ P (succ a), from
induction_on a
(and.intro H1 H2)
(take k IH,
have IH1 : P k, from and.elim_left IH,
have IH2 : P (succ k), from and.elim_right IH,
and.intro IH2 (H3 k IH1 IH2)),
and.elim_left stronger
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
have general : ∀m, P n m, from induction_on n
(take m : , H1 m)
(take k : ,
assume IH : ∀m, P k m,
take m : ,
discriminate
(assume Hm : m = 0, Hm⁻¹ ▸ (H2 k))
(take l : , assume Hm : m = succ l, Hm⁻¹ ▸ (H3 k l (IH l)))),
general m
-- Addition
-- --------
theorem add.zero_right (n : ) : n + 0 = n :=
rfl
theorem add.succ_right (n m : ) : n + succ m = succ (n + m) :=
rfl
irreducible add
theorem add.zero_left (n : ) : 0 + n = n :=
induction_on n
!add.zero_right
(take m IH, show 0 + succ m = succ m, from
calc
0 + succ m = succ (0 + m) : add.succ_right
... = succ m : IH)
theorem add.succ_left (n m : ) : (succ n) + m = succ (n + m) :=
induction_on m
(!add.zero_right ▸ !add.zero_right)
(take k IH, calc
succ n + succ k = succ (succ n + k) : add.succ_right
... = succ (succ (n + k)) : IH
... = succ (n + succ k) : add.succ_right)
theorem add.comm (n m : ) : n + m = m + n :=
induction_on m
(!add.zero_right ⬝ !add.zero_left⁻¹)
(take k IH, calc
n + succ k = succ (n+k) : add.succ_right
... = succ (k + n) : IH
... = succ k + n : add.succ_left)
theorem add.move_succ (n m : ) : succ n + m = n + succ m :=
!add.succ_left ⬝ !add.succ_right⁻¹
theorem add.comm_succ (n m : ) : n + succ m = m + succ n :=
!add.move_succ⁻¹ ⬝ !add.comm
theorem add.assoc (n m k : ) : (n + m) + k = n + (m + k) :=
induction_on k
(!add.zero_right ▸ !add.zero_right)
(take l IH,
calc
(n + m) + succ l = succ ((n + m) + l) : add.succ_right
... = succ (n + (m + l)) : IH
... = n + succ (m + l) : add.succ_right
... = n + (m + succ l) : add.succ_right)
theorem add.left_comm (n m k : ) : n + (m + k) = m + (n + k) :=
left_comm add.comm add.assoc n m k
theorem add.right_comm (n m k : ) : n + m + k = n + k + m :=
right_comm add.comm add.assoc n m k
-- ### cancelation
theorem add.cancel_left {n m k : } : n + m = n + k → m = k :=
induction_on n
(take H : 0 + m = 0 + k,
!add.zero_left⁻¹ ⬝ H ⬝ !add.zero_left)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k),
from calc
succ (n + m) = succ n + m : add.succ_left
... = succ n + k : H
... = succ (n + k) : add.succ_left,
have H3 : n + m = n + k, from succ.inj H2,
IH H3)
theorem add.cancel_right {n m k : } (H : n + m = k + m) : n = k :=
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
add.cancel_left H2
theorem add.eq_zero_left {n m : } : n + m = 0 → n = 0 :=
induction_on n
(take (H : 0 + m = 0), rfl)
(take k IH,
assume H : succ k + m = 0,
absurd
(show succ (k + m) = 0, from calc
succ (k + m) = succ k + m : add.succ_left
... = 0 : H)
!succ_ne_zero)
theorem add.eq_zero_right {n m : } (H : n + m = 0) : m = 0 :=
add.eq_zero_left (!add.comm ⬝ H)
theorem add.eq_zero {n m : } (H : n + m = 0) : n = 0 ∧ m = 0 :=
and.intro (add.eq_zero_left H) (add.eq_zero_right H)
-- ### misc
theorem add.one (n : ) : n + 1 = succ n :=
!add.zero_right ▸ !add.succ_right
theorem add.one_left (n : ) : 1 + n = succ n :=
!add.zero_left ▸ !add.succ_left
-- TODO: rename? remove?
theorem induction_plus_one {P : nat → Prop} (a : ) (H1 : P 0)
(H2 : ∀ (n : ) (IH : P n), P (n + 1)) : P a :=
nat.rec H1 (take n IH, !add.one ▸ (H2 n IH)) a
-- Multiplication
-- --------------
theorem mul.zero_right (n : ) : n * 0 = 0 :=
rfl
theorem mul.succ_right (n m : ) : n * succ m = n * m + n :=
rfl
irreducible mul
-- ### commutativity, distributivity, associativity, identity
theorem mul.zero_left (n : ) : 0 * n = 0 :=
induction_on n
!mul.zero_right
(take m IH, !mul.succ_right ⬝ !add.zero_right ⬝ IH)
theorem mul.succ_left (n m : ) : (succ n) * m = (n * m) + m :=
induction_on m
(!mul.zero_right ⬝ !mul.zero_right⁻¹ ⬝ !add.zero_right⁻¹)
(take k IH, calc
succ n * succ k = (succ n * k) + succ n : mul.succ_right
... = (n * k) + k + succ n : IH
... = (n * k) + (k + succ n) : add.assoc
... = (n * k) + (n + succ k) : add.comm_succ
... = (n * k) + n + succ k : add.assoc
... = (n * succ k) + succ k : mul.succ_right)
theorem mul.comm (n m : ) : n * m = m * n :=
induction_on m
(!mul.zero_right ⬝ !mul.zero_left⁻¹)
(take k IH, calc
n * succ k = n * k + n : mul.succ_right
... = k * n + n : IH
... = (succ k) * n : mul.succ_left)
theorem mul.distr_right (n m k : ) : (n + m) * k = n * k + m * k :=
induction_on k
(calc
(n + m) * 0 = 0 : mul.zero_right
... = 0 + 0 : add.zero_right
... = n * 0 + 0 : mul.zero_right
... = n * 0 + m * 0 : mul.zero_right)
(take l IH, calc
(n + m) * succ l = (n + m) * l + (n + m) : mul.succ_right
... = n * l + m * l + (n + m) : IH
... = n * l + m * l + n + m : add.assoc
... = n * l + n + m * l + m : add.right_comm
... = n * l + n + (m * l + m) : add.assoc
... = n * succ l + (m * l + m) : mul.succ_right
... = n * succ l + m * succ l : mul.succ_right)
theorem mul.distr_left (n m k : ) : n * (m + k) = n * m + n * k :=
calc
n * (m + k) = (m + k) * n : mul.comm
... = m * n + k * n : mul.distr_right
... = n * m + k * n : mul.comm
... = n * m + n * k : mul.comm
theorem mul.assoc (n m k : ) : (n * m) * k = n * (m * k) :=
induction_on k
(calc
(n * m) * 0 = 0 : mul.zero_right
... = n * 0 : mul.zero_right
... = n * (m * 0) : mul.zero_right)
(take l IH,
calc
(n * m) * succ l = (n * m) * l + n * m : mul.succ_right
... = n * (m * l) + n * m : IH
... = n * (m * l + m) : mul.distr_left
... = n * (m * succ l) : mul.succ_right)
theorem mul.left_comm (n m k : ) : n * (m * k) = m * (n * k) :=
left_comm mul.comm mul.assoc n m k
theorem mul.right_comm (n m k : ) : n * m * k = n * k * m :=
right_comm mul.comm mul.assoc n m k
theorem mul.one_right (n : ) : n * 1 = n :=
calc
n * 1 = n * 0 + n : mul.succ_right
... = 0 + n : mul.zero_right
... = n : add.zero_left
theorem mul.one_left (n : ) : 1 * n = n :=
calc
1 * n = n * 1 : mul.comm
... = n : mul.one_right
theorem mul.eq_zero {n m : } (H : n * m = 0) : n = 0 m = 0 :=
discriminate
(take Hn : n = 0, or.inl Hn)
(take (k : ),
assume (Hk : n = succ k),
discriminate
(take (Hm : m = 0), or.inr Hm)
(take (l : ),
assume (Hl : m = succ l),
have Heq : succ (k * succ l + l) = n * m, from
(calc
n * m = n * succ l : Hl
... = succ k * succ l : Hk
... = k * succ l + succ l : mul.succ_left
... = succ (k * succ l + l) : add.succ_right)⁻¹,
absurd (Heq ⬝ H) !succ_ne_zero))
end nat