lean2/src/kernel/normalize.cpp

208 lines
8.1 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include "normalize.h"
#include "expr.h"
#include "context.h"
#include "environment.h"
#include "builtin.h"
#include "free_vars.h"
#include "list.h"
#include "buffer.h"
#include "trace.h"
#include "exception.h"
namespace lean {
class svalue;
typedef list<svalue> value_stack; //!< Normalization stack
enum class svalue_kind { Expr, Closure, BoundedVar };
/** \brief Stack value: simple expressions, closures and bounded variables. */
class svalue {
svalue_kind m_kind;
unsigned m_bvar;
expr m_expr;
value_stack m_ctx;
public:
explicit svalue(expr const & e): m_kind(svalue_kind::Expr), m_expr(e) {}
explicit svalue(unsigned k): m_kind(svalue_kind::BoundedVar), m_bvar(k) {}
svalue(expr const & e, value_stack const & c):m_kind(svalue_kind::Closure), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); }
svalue_kind kind() const { return m_kind; }
bool is_expr() const { return kind() == svalue_kind::Expr; }
bool is_closure() const { return kind() == svalue_kind::Closure; }
bool is_bounded_var() const { return kind() == svalue_kind::BoundedVar; }
expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return m_expr; }
value_stack const & get_ctx() const { lean_assert(is_closure()); return m_ctx; }
unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; }
};
svalue_kind kind(svalue const & v) { return v.kind(); }
expr const & to_expr(svalue const & v) { return v.get_expr(); }
value_stack const & stack_of(svalue const & v) { return v.get_ctx(); }
unsigned to_bvar(svalue const & v) { return v.get_var_idx(); }
value_stack extend(value_stack const & s, svalue const & v) { return cons(v, s); }
/** \brief Expression normalizer. */
class normalize_fn {
environment const & m_env;
context const & m_ctx;
svalue lookup(value_stack const & s, unsigned i, unsigned k) {
unsigned j = i;
value_stack const * it1 = &s;
while (*it1) {
if (j == 0)
return head(*it1);
--j;
it1 = &tail(*it1);
}
context const & c = ::lean::lookup(m_ctx, j);
if (c) {
context_entry const & entry = head(c);
if (entry.get_body())
return svalue(::lean::normalize(entry.get_body(), m_env, tail(c)));
else
return svalue(length(c) - 1);
}
throw exception("unknown free variable");
}
/** \brief Convert the closure \c a into an expression using the given stack in a context that contains \c k binders. */
expr reify_closure(expr const & a, value_stack const & s, unsigned k) {
lean_assert(is_lambda(a));
expr new_t = reify(normalize(abst_domain(a), s, k), k);
expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1);
return lambda(abst_name(a), new_t, new_b);
#if 0
// Eta-reduction + Cumulativity + Set theoretic interpretation is unsound.
// Example:
// f : (Type 2) -> (Type 2)
// (lambda (x : (Type 1)) (f x)) : (Type 1) -> (Type 2)
// The domains of these two terms are different. So, they must have different denotations.
// However, by eta-reduction, we have:
// (lambda (x : (Type 1)) (f x)) == f
// For now, we will disable it.
// REMARK: we can workaround this problem by applying only when the domain of f is equal
// to the domain of the lambda abstraction.
//
if (is_app(new_b)) {
// (lambda (x:T) (app f ... (var 0)))
// check eta-rule applicability
unsigned n = num_args(new_b);
if (is_var(arg(new_b, n - 1), 0) &&
std::all_of(begin_args(new_b),
end_args(new_b) - 1,
[](expr const & arg) { return !has_free_var(arg, 0); })) {
if (n == 2)
return lower_free_vars(arg(new_b, 0), 1);
else
return lower_free_vars(app(n - 1, begin_args(new_b)), 1);
}
return lambda(abst_name(a), new_t, new_b);
} else {
return lambda(abst_name(a), new_t, new_b);
}
#endif
}
/** \brief Convert the value \c v back into an expression in a context that contains \c k binders. */
expr reify(svalue const & v, unsigned k) {
lean_trace("normalize", tout << "Reify kind: " << static_cast<unsigned>(v.kind()) << "\n";
if (v.is_bounded_var()) tout << "#" << to_bvar(v); else tout << to_expr(v); tout << "\n";);
switch (v.kind()) {
case svalue_kind::Expr: return to_expr(v);
case svalue_kind::BoundedVar: return var(k - to_bvar(v) - 1);
case svalue_kind::Closure: return reify_closure(to_expr(v), stack_of(v), k);
}
lean_unreachable();
return expr();
}
/** \brief Normalize the expression \c a in a context composed of stack \c s and \c k binders. */
svalue normalize(expr const & a, value_stack const & s, unsigned k) {
lean_trace("normalize", tout << "Normalize, k: " << k << "\n" << a << "\n";);
switch (a.kind()) {
case expr_kind::Var:
return lookup(s, var_idx(a), k);
case expr_kind::Constant: case expr_kind::Type: case expr_kind::Value:
return svalue(a);
case expr_kind::App: {
svalue f = normalize(arg(a, 0), s, k);
unsigned i = 1;
unsigned n = num_args(a);
while (true) {
if (f.is_closure()) {
// beta reduction
expr const & fv = to_expr(f);
lean_trace("normalize", tout << "beta reduction...\n" << fv << "\n";);
value_stack new_s = extend(stack_of(f), normalize(arg(a, i), s, k));
f = normalize(abst_body(fv), new_s, k);
if (i == n - 1)
return f;
i++;
}
else {
buffer<expr> new_args;
expr new_f = reify(f, k);
new_args.push_back(new_f);
for (; i < n; i++)
new_args.push_back(reify(normalize(arg(a, i), s, k), k));
if (is_value(new_f)) {
expr r;
if (to_value(new_f).normalize(new_args.size(), new_args.data(), r))
return svalue(r);
}
return svalue(app(new_args.size(), new_args.data()));
}
}
}
case expr_kind::Eq: {
expr new_l = reify(normalize(eq_lhs(a), s, k), k);
expr new_r = reify(normalize(eq_rhs(a), s, k), k);
if (new_l == new_r) {
return svalue(bool_value(true));
} else if (is_value(new_l) && is_value(new_r)) {
return svalue(bool_value(false));
} else {
return svalue(eq(new_l, new_r));
}
}
case expr_kind::Lambda:
return svalue(a, s);
case expr_kind::Pi: {
expr new_t = reify(normalize(abst_domain(a), s, k), k);
expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1);
return svalue(pi(abst_name(a), new_t, new_b));
}
case expr_kind::Let:
return normalize(let_body(a), extend(s, normalize(let_value(a), s, k)), k+1);
}
lean_unreachable();
return svalue(a);
}
public:
normalize_fn(environment const & env, context const & ctx):
m_env(env),
m_ctx(ctx) {
}
expr operator()(expr const & e) {
unsigned k = length(m_ctx);
return reify(normalize(e, value_stack(), k), k);
}
};
expr normalize(expr const & e, environment const & env, context const & ctx) {
return normalize_fn(env, ctx)(e);
}
}