lean2/hott/types/bool.hlean

169 lines
4.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura, Floris van Doorn
Partially ported from the standard library
-/
open eq eq.ops decidable
namespace bool
local attribute bor [reducible]
local attribute band [reducible]
theorem dichotomy (b : bool) : b = ff ⊎ b = tt :=
bool.cases_on b (sum.inl rfl) (sum.inr rfl)
theorem cond_ff {A : Type} (t e : A) : cond ff t e = e :=
rfl
theorem cond_tt {A : Type} (t e : A) : cond tt t e = t :=
rfl
theorem eq_tt_of_ne_ff : Π {a : bool}, a ≠ ff → a = tt
| @eq_tt_of_ne_ff tt H := rfl
| @eq_tt_of_ne_ff ff H := absurd rfl H
theorem eq_ff_of_ne_tt : Π {a : bool}, a ≠ tt → a = ff
| @eq_ff_of_ne_tt tt H := absurd rfl H
| @eq_ff_of_ne_tt ff H := rfl
theorem absurd_of_eq_ff_of_eq_tt {B : Type} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B :=
absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt
theorem tt_bor (a : bool) : bor tt a = tt :=
rfl
notation a || b := bor a b
theorem bor_tt (a : bool) : a || tt = tt :=
bool.cases_on a rfl rfl
theorem ff_bor (a : bool) : ff || a = a :=
bool.cases_on a rfl rfl
theorem bor_ff (a : bool) : a || ff = a :=
bool.cases_on a rfl rfl
theorem bor_self (a : bool) : a || a = a :=
bool.cases_on a rfl rfl
theorem bor.comm (a b : bool) : a || b = b || a :=
by cases a; repeat (cases b | reflexivity)
theorem bor.assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
match a with
| ff := by rewrite *ff_bor
| tt := by rewrite *tt_bor
end
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ⊎ b = tt :=
bool.rec_on a
(suppose ff || b = tt,
have b = tt, from !ff_bor ▸ this,
sum.inr this)
(suppose tt || b = tt,
sum.inl rfl)
theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt :=
by rewrite H
theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt :=
bool.rec_on a (by rewrite H) (by rewrite H)
theorem ff_band (a : bool) : ff && a = ff :=
rfl
theorem tt_band (a : bool) : tt && a = a :=
bool.cases_on a rfl rfl
theorem band_ff (a : bool) : a && ff = ff :=
bool.cases_on a rfl rfl
theorem band_tt (a : bool) : a && tt = a :=
bool.cases_on a rfl rfl
theorem band_self (a : bool) : a && a = a :=
bool.cases_on a rfl rfl
theorem band.comm (a b : bool) : a && b = b && a :=
bool.cases_on a
(bool.cases_on b rfl rfl)
(bool.cases_on b rfl rfl)
theorem band.assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
match a with
| ff := by rewrite *ff_band
| tt := by rewrite *tt_band
end
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
sum.elim (dichotomy a)
(suppose a = ff,
absurd
(calc ff = ff && b : ff_band
... = a && b : this
... = tt : H)
ff_ne_tt)
(suppose a = tt, this)
theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt :=
by rewrite [H₁, H₂]
theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band_elim_left (!band.comm ⬝ H)
theorem bnot_bnot (a : bool) : bnot (bnot a) = a :=
bool.cases_on a rfl rfl
theorem bnot_empty : bnot ff = tt :=
rfl
theorem bnot_unit : bnot tt = ff :=
rfl
theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt :=
bool.cases_on a (by contradiction) (λ h, rfl)
theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff :=
bool.cases_on a (λ h, rfl) (by contradiction)
definition bxor (x:bool) (y:bool) := cond x (bnot y) y
/- HoTT-related stuff -/
open is_equiv equiv function is_trunc option unit decidable
definition is_equiv_bnot [constructor] [instance] [priority 500] : is_equiv bnot :=
begin
fapply is_equiv.mk,
exact bnot,
all_goals (intro b;cases b), do 6 reflexivity
-- all_goals (focus (intro b;cases b;all_goals reflexivity)),
end
definition bnot_ne : Π(b : bool), bnot b ≠ b
| bnot_ne tt := ff_ne_tt
| bnot_ne ff := ne.symm ff_ne_tt
definition equiv_bnot [constructor] : bool ≃ bool := equiv.mk bnot _
definition eq_bnot : bool = bool := ua equiv_bnot
definition eq_bnot_ne_idp : eq_bnot ≠ idp :=
assume H : eq_bnot = idp,
assert H2 : bnot = id, from !cast_ua_fn⁻¹ ⬝ ap cast H,
absurd (ap10 H2 tt) ff_ne_tt
definition bool_equiv_option_unit : bool ≃ option unit :=
begin
fapply equiv.MK,
{ intro b, cases b, exact none, exact some star},
{ intro u, cases u, exact ff, exact tt},
{ intro u, cases u with u, reflexivity, cases u, reflexivity},
{ intro b, cases b, reflexivity, reflexivity},
end
end bool