2014-12-12 21:20:27 +00:00
|
|
|
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
-- Authors: Jeremy Avigad, Leonardo de Moura
|
|
|
|
|
|
|
|
|
|
definition imp (a b : Prop) : Prop := a → b
|
|
|
|
|
|
|
|
|
|
variables {a b c d : Prop}
|
|
|
|
|
|
|
|
|
|
theorem mt (H1 : a → b) (H2 : ¬b) : ¬a :=
|
|
|
|
|
assume Ha : a, absurd (H1 Ha) H2
|
|
|
|
|
|
|
|
|
|
-- make c explicit and rename to false.elim
|
|
|
|
|
theorem false_elim {c : Prop} (H : false) : c :=
|
|
|
|
|
false.rec c H
|
|
|
|
|
|
|
|
|
|
-- not
|
|
|
|
|
-- ---
|
|
|
|
|
|
|
|
|
|
theorem not_elim (H1 : ¬a) (H2 : a) : false := H1 H2
|
|
|
|
|
|
|
|
|
|
theorem not_intro (H : a → false) : ¬a := H
|
|
|
|
|
|
|
|
|
|
theorem not_not_intro (Ha : a) : ¬¬a :=
|
|
|
|
|
assume Hna : ¬a, absurd Ha Hna
|
|
|
|
|
|
|
|
|
|
theorem not_implies_left (H : ¬(a → b)) : ¬¬a :=
|
|
|
|
|
assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H
|
|
|
|
|
|
|
|
|
|
theorem not_implies_right (H : ¬(a → b)) : ¬b :=
|
|
|
|
|
assume Hb : b, absurd (assume Ha : a, Hb) H
|
|
|
|
|
|
|
|
|
|
theorem not_not_em : ¬¬(a ∨ ¬a) :=
|
|
|
|
|
assume not_em : ¬(a ∨ ¬a),
|
|
|
|
|
have Hnp : ¬a, from
|
|
|
|
|
assume Hp : a, absurd (or.inl Hp) not_em,
|
|
|
|
|
absurd (or.inr Hnp) not_em
|
|
|
|
|
|
|
|
|
|
-- and
|
|
|
|
|
-- ---
|
|
|
|
|
|
|
|
|
|
namespace and
|
2014-12-12 21:50:53 +00:00
|
|
|
|
definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) :=
|
|
|
|
|
assume H : a ∧ b, absurd (elim_left H) Hna
|
|
|
|
|
|
|
|
|
|
definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) :=
|
|
|
|
|
assume H : a ∧ b, absurd (elim_right H) Hnb
|
|
|
|
|
|
2014-12-12 21:20:27 +00:00
|
|
|
|
theorem swap (H : a ∧ b) : b ∧ a :=
|
|
|
|
|
intro (elim_right H) (elim_left H)
|
|
|
|
|
|
|
|
|
|
theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d :=
|
|
|
|
|
elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb))
|
|
|
|
|
|
|
|
|
|
theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c :=
|
|
|
|
|
elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc)
|
|
|
|
|
|
|
|
|
|
theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b :=
|
|
|
|
|
elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha))
|
|
|
|
|
|
|
|
|
|
theorem comm : a ∧ b ↔ b ∧ a :=
|
|
|
|
|
iff.intro (λH, swap H) (λH, swap H)
|
|
|
|
|
|
|
|
|
|
theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) :=
|
|
|
|
|
iff.intro
|
|
|
|
|
(assume H, intro
|
|
|
|
|
(elim_left (elim_left H))
|
|
|
|
|
(intro (elim_right (elim_left H)) (elim_right H)))
|
|
|
|
|
(assume H, intro
|
|
|
|
|
(intro (elim_left H) (elim_left (elim_right H)))
|
|
|
|
|
(elim_right (elim_right H)))
|
|
|
|
|
end and
|
|
|
|
|
|
|
|
|
|
-- or
|
|
|
|
|
-- --
|
|
|
|
|
|
|
|
|
|
namespace or
|
2014-12-12 21:50:53 +00:00
|
|
|
|
definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) :=
|
|
|
|
|
assume H : a ∨ b, or.rec_on H
|
|
|
|
|
(assume Ha, absurd Ha Hna)
|
|
|
|
|
(assume Hb, absurd Hb Hnb)
|
|
|
|
|
|
2014-12-12 21:20:27 +00:00
|
|
|
|
theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d :=
|
|
|
|
|
elim H₁
|
|
|
|
|
(assume Ha : a, inl (H₂ Ha))
|
|
|
|
|
(assume Hb : b, inr (H₃ Hb))
|
|
|
|
|
|
|
|
|
|
theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c :=
|
|
|
|
|
elim H₁
|
|
|
|
|
(assume H₂ : a, inl (H H₂))
|
|
|
|
|
(assume H₂ : c, inr H₂)
|
|
|
|
|
|
|
|
|
|
theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b :=
|
|
|
|
|
elim H₁
|
|
|
|
|
(assume H₂ : c, inl H₂)
|
|
|
|
|
(assume H₂ : a, inr (H H₂))
|
|
|
|
|
|
|
|
|
|
theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d :=
|
|
|
|
|
elim H Ha (assume H₂, elim H₂ Hb Hc)
|
|
|
|
|
|
|
|
|
|
theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b :=
|
|
|
|
|
elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb)
|
|
|
|
|
|
|
|
|
|
theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a :=
|
|
|
|
|
elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂)
|
|
|
|
|
|
|
|
|
|
theorem swap (H : a ∨ b) : b ∨ a :=
|
|
|
|
|
elim H (assume Ha, inr Ha) (assume Hb, inl Hb)
|
|
|
|
|
|
|
|
|
|
theorem comm : a ∨ b ↔ b ∨ a :=
|
|
|
|
|
iff.intro (λH, swap H) (λH, swap H)
|
|
|
|
|
|
|
|
|
|
theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) :=
|
|
|
|
|
iff.intro
|
|
|
|
|
(assume H, elim H
|
|
|
|
|
(assume H₁, elim H₁
|
|
|
|
|
(assume Ha, inl Ha)
|
|
|
|
|
(assume Hb, inr (inl Hb)))
|
|
|
|
|
(assume Hc, inr (inr Hc)))
|
|
|
|
|
(assume H, elim H
|
|
|
|
|
(assume Ha, (inl (inl Ha)))
|
|
|
|
|
(assume H₁, elim H₁
|
|
|
|
|
(assume Hb, inl (inr Hb))
|
|
|
|
|
(assume Hc, inr Hc)))
|
|
|
|
|
end or
|
|
|
|
|
|
|
|
|
|
-- iff
|
|
|
|
|
-- ---
|
|
|
|
|
|
|
|
|
|
namespace iff
|
|
|
|
|
definition def : (a ↔ b) = ((a → b) ∧ (b → a)) :=
|
|
|
|
|
!eq.refl
|
|
|
|
|
|
|
|
|
|
end iff
|
|
|
|
|
|
|
|
|
|
-- exists_unique
|
|
|
|
|
-- -------------
|
|
|
|
|
|
|
|
|
|
definition exists_unique {A : Type} (p : A → Prop) :=
|
|
|
|
|
∃x, p x ∧ ∀y, p y → y = x
|
|
|
|
|
|
|
|
|
|
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
|
|
|
|
|
|
|
|
|
|
theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x :=
|
|
|
|
|
exists_intro w (and.intro H1 H2)
|
|
|
|
|
|
|
|
|
|
theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop}
|
|
|
|
|
(H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b :=
|
|
|
|
|
obtain w Hw, from H2,
|
|
|
|
|
H1 w (and.elim_left Hw) (and.elim_right Hw)
|
2014-12-12 21:50:53 +00:00
|
|
|
|
|
|
|
|
|
-- if-then-else
|
|
|
|
|
-- ------------
|
|
|
|
|
section
|
|
|
|
|
open eq.ops
|
|
|
|
|
|
|
|
|
|
variables {A : Type} {c₁ c₂ : Prop}
|
|
|
|
|
|
|
|
|
|
definition if_true (t e : A) : (if true then t else e) = t :=
|
|
|
|
|
if_pos trivial
|
|
|
|
|
|
|
|
|
|
definition if_false (t e : A) : (if false then t else e) = e :=
|
|
|
|
|
if_neg not_false
|
|
|
|
|
|
|
|
|
|
theorem if_cond_congr [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A)
|
|
|
|
|
: (if c₁ then t else e) = (if c₂ then t else e) :=
|
|
|
|
|
decidable.rec_on H₁
|
|
|
|
|
(λ Hc₁ : c₁, decidable.rec_on H₂
|
|
|
|
|
(λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹)
|
|
|
|
|
(λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂))
|
|
|
|
|
(λ Hnc₁ : ¬c₁, decidable.rec_on H₂
|
|
|
|
|
(λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁)
|
|
|
|
|
(λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹))
|
|
|
|
|
|
|
|
|
|
theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A}
|
|
|
|
|
(Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
|
|
|
(if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) :=
|
|
|
|
|
Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
|
|
|
|
|
|
|
|
|
|
theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
|
|
|
|
|
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
|
|
|
|
|
have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc),
|
|
|
|
|
if_congr_aux Hc Ht He
|
|
|
|
|
end
|