lean2/library/hott/pointed.lean

40 lines
1.3 KiB
Text
Raw Normal View History

2014-11-08 23:09:21 +00:00
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import hott.path hott.trunc data.sigma data.prod
open path prod
inductive is_pointed [class] (A : Type) :=
pointed_mk : Π(a : A), is_pointed A
namespace is_pointed
variables {A B : Type} (f : A → B)
definition point (A : Type) [H : is_pointed A] : A :=
is_pointed.rec (λinv, inv) H
-- Any contractible type is pointed
protected definition contr [instance] (H : Contr A) : is_pointed A :=
pointed_mk (center H)
-- A pi type with a pointed target is pointed
protected definition pi [instance] {P : A → Type} [H : Πx, is_pointed (P x)]
: is_pointed (Πx, P x) :=
pointed_mk (λx, point (P x))
-- A sigma type of pointed components is pointed
protected definition sigma [instance] {P : A → Type} [G : is_pointed A]
[H : is_pointed (P (point A))] : is_pointed (Σx, P x) :=
pointed_mk (sigma.dpair (point A) (point (P (point A))))
protected definition prod [H1 : is_pointed A] [H2 : is_pointed B]
: is_pointed (A × B) :=
pointed_mk (prod.mk (point A) (point B))
protected definition loop_space (a : A) : is_pointed (a ≈ a) :=
pointed_mk idp
end is_pointed